論文の概要: Decentralized Health Intelligence Network (DHIN)
- arxiv url: http://arxiv.org/abs/2408.06240v3
- Date: Wed, 14 Aug 2024 01:47:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 12:22:42.449402
- Title: Decentralized Health Intelligence Network (DHIN)
- Title(参考訳): 分散ヘルスインテリジェンスネットワーク(DHIN)
- Authors: Abraham Nash,
- Abstract要約: 分散ヘルスインテリジェンスネットワーク(Decentralized Health Intelligence Network, DHIN)は、医療における健康データ主権とAI利用の課題に対処する理論フレームワークである。
医療における効果的なAIトレーニングをサポートし、患者が健康データをコントロールし、金銭的に利益を享受し、分散型でスケーラブルなエコシステムに貢献できるようにする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized Health Intelligence Network (DHIN) is a theoretical framework addressing significant challenges of health data sovereignty and AI utilization in healthcare caused by data fragmentation across providers and institutions. It establishes a sovereign architecture for healthcare provision as a prerequisite to a sovereign health network, then facilitates effective AI utilization by overcoming barriers to accessing diverse medical data sources. This comprehensive framework leverages: 1) self-sovereign identity architecture coupled with a personal health record (PHR) as a prerequisite for health data sovereignty; 2) a scalable federated learning (FL) protocol implemented on a public blockchain for decentralized AI training in healthcare, where health data remains with participants and only model parameter updates are shared; and 3) a scalable, trustless rewards mechanism to incentivize participation and ensure fair reward distribution. This framework ensures that no entity can prevent or control access to training on health data offered by participants or determine financial benefits, as these processes operate on a public blockchain with an immutable record and without a third party. It supports effective AI training in healthcare, allowing patients to maintain control over their health data, benefit financially, and contribute to a decentralized, scalable ecosystem that leverages collective AI to develop beneficial healthcare algorithms. Patients receive rewards into their digital wallets as an incentive to opt-in to the FL protocol, with a long-term roadmap to funding decentralized insurance solutions. This approach introduces a novel, self-financed healthcare model that adapts to individual needs, complements existing systems, and redefines universal coverage. It highlights the potential to transform healthcare data management and AI utilization while empowering patients.
- Abstract(参考訳): 分散ヘルスインテリジェンスネットワーク(Decentralized Health Intelligence Network, DHIN)は、医療における医療データの主権とAI利用に関する重要な課題に対処する理論フレームワークである。
そして、多様な医療データソースにアクセスする障壁を克服することで、効果的なAI利用を促進する。
この包括的なフレームワークは下記の通りである。
1) 健康データ主権の前提条件として、自己主権のアイデンティティ・アーキテクチャと個人健康記録(PHR)を併用すること。
2)医療における分散AIトレーニングのためのパブリックブロックチェーン上に実装されたスケーラブルなフェデレーションラーニング(FL)プロトコル。
3) 参加のインセンティブを与え、公平な報酬配分を確保するための、スケーラブルで信頼できない報酬メカニズム。
このフレームワークは、参加者が提供した健康データに対するトレーニングの防止や制御、あるいは金銭的利益の決定を可能にする。
医療における効果的なAIトレーニングをサポートし、患者が健康データをコントロールし、経済的に利益を享受し、集団AIを活用して有益な医療アルゴリズムを開発する分散型でスケーラブルなエコシステムに貢献できるようにする。
患者はFLプロトコルにオプトインするためのインセンティブとしてデジタルウォレットに報酬を受け取る。
このアプローチは、個人のニーズに適応し、既存のシステムを補完し、普遍的なカバレッジを再定義する、新しい自己完結型医療モデルを導入します。
患者を力づけながら、医療データ管理とAI利用を変革する可能性を強調している。
関連論文リスト
- Block MedCare: Advancing healthcare through blockchain integration [0.0]
本稿では、医療におけるブロックチェーン技術の統合について検討する。
電子健康記録(EHR)の管理とデータ共有に革命をもたらす可能性に焦点を当てている。
本稿では,患者が医療データを安全に保存し,管理できるようにするための新しいシステムを提案する。
論文 参考訳(メタデータ) (2024-10-07T17:54:13Z) - Secure and Transparent Medical Record Management System Using Python and Blockchain [0.0]
ブロックチェーン技術上に構築されたロバストなヘルスレコードストレージと管理システムを提案する。
従来のデータベースとは異なり、ブロックチェーンはノードのネットワークにデータを分散し、サイバー攻撃に対する冗長性とレジリエンスを確保する。
当システムでは、患者の健康記録を完全にコントロールすることで、患者のエンパワーメントを優先する。
論文 参考訳(メタデータ) (2024-08-04T16:29:13Z) - Decentralized Intelligence Network (DIN) [0.0]
分散インテリジェンスネットワーク(Decentralized Intelligence Network, DIN)は、AI開発における課題に対処するために設計された理論フレームワークである。
このフレームワークは、参加者がデータのコントロールを維持し、金銭的に利益を享受し、分散型でスケーラブルなエコシステムに貢献できるようにすることで、効果的なAIトレーニングをサポートする。
論文 参考訳(メタデータ) (2024-07-02T17:40:06Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - healthAIChain: Improving security and safety using Blockchain Technology
applications in AI-based healthcare systems [0.0]
bitcoin以降、ブロックチェーン技術は医療産業や医療分野に応用された汎用技術へと発展してきた。
この研究は、AIベースのヘルスケアシステムにブロックチェーンを実装することで、セキュリティと安全性が改善されていることを詳しく説明している。
医療および医療産業における人工知能、潜在的な分野、医療システムにおけるブロックチェーンに関するオープンな疑問についても検討した。
論文 参考訳(メタデータ) (2023-11-01T20:47:36Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
イタリア国立衛生局は、その技術機関を通じて人工知能を採用している。
このような広大なプログラムには、知識領域の形式化に特別な注意が必要である。
AIが患者、開業医、健康システムに与える影響について疑問が投げかけられている。
論文 参考訳(メタデータ) (2023-04-24T08:00:02Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
この可能性を解き明かすには、大規模な異種データに対して医療AIモデルの性能を測定する体系的な方法が必要である、と私たちは主張する。
MedPerfは、医療分野で機械学習をベンチマークするためのオープンフレームワークです。
論文 参考訳(メタデータ) (2021-09-29T18:09:41Z) - User-Centric Health Data Using Self-sovereign Identities [69.50862982117127]
本稿では、健康データのプライバシーと管理を改善するために、発行者自尊心(SSI)と分散Ledger Technologies(DLT)の潜在的利用について述べる。
論文では、保健分野における分散IDの顕著なユースケースをリストアップし、効果的なブロックチェーンベースのアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2021-07-26T17:09:52Z) - Regulation conform DLT-operable payment adapter based on trustless -
justified trust combined generalized state channels [77.34726150561087]
物の経済(EoT)は、ピアツーピアの信頼性のないネットワークで動作するソフトウェアエージェントに基づいています。
基本的価値と技術的可能性が異なる現在のソリューションの概要を述べる。
我々は,暗号ベースの分散型の信頼できない要素の強みと,確立された,十分に規制された支払い手段を組み合わせることを提案する。
論文 参考訳(メタデータ) (2020-07-03T10:45:55Z) - SSHealth: Toward Secure, Blockchain-Enabled Healthcare Systems [13.035267999201935]
本稿では,感染症の発見,遠隔監視,迅速な緊急対応を可能にする,スマートでセキュアな医療システム(ssHealth)を提案する。
ブロックチェーンベースのアーキテクチャを開発し、そのフレキシブルな構成を可能にし、異なるヘルスエンティティ間の医療データ共有を最適化します。
提案するssHealthシステムの利点と今後の研究の方向性を明らかにする。
論文 参考訳(メタデータ) (2020-06-18T20:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。