Demonstration of a CAFQA-bootstrapped Variational Quantum Eigensolver on a Trapped-Ion Quantum Computer
- URL: http://arxiv.org/abs/2408.06482v1
- Date: Mon, 12 Aug 2024 20:30:37 GMT
- Title: Demonstration of a CAFQA-bootstrapped Variational Quantum Eigensolver on a Trapped-Ion Quantum Computer
- Authors: Qingfeng Wang, Liudmila Zhukas, Qiang Miao, Aniket S. Dalvi, Peter J. Love, Christopher Monroe, Frederic T. Chong, Gokul Subramanian Ravi,
- Abstract summary: We develop a novel hardware-software interface framework to support independent software environments for both the circuit and hardware end.
This framework can be applied to a variety of academic quantum devices beyond the trapped-ion quantum computer platform.
- Score: 3.1248137848871647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To enhance the variational quantum eigensolver (VQE), the CAFQA method can utilize classical computational capabilities to identify a better initial state than the Hartree-Fock method. Previous research has demonstrated that the initial state provided by CAFQA recovers more correlation energy than that of the Hartree-Fock method and results in faster convergence. In the present study, we advance the investigation of CAFQA by demonstrating its advantages on a high-fidelity trapped-ion quantum computer located at the Duke Quantum Center -- this is the first experimental demonstration of CAFQA-bootstrapped VQE on a TI device and on any academic quantum device. In our VQE experiment, we use LiH and BeH$_2$ as test cases to show that CAFQA achieves faster convergence and obtains lower energy values within the specified computational budget limits. To ensure the seamless execution of VQE on this academic device, we develop a novel hardware-software interface framework that supports independent software environments for both the circuit and hardware end. This mechanism facilitates the automation of VQE-type job executions as well as mitigates the impact of random hardware interruptions. This framework is versatile and can be applied to a variety of academic quantum devices beyond the trapped-ion quantum computer platform, with support for integration with customized packages.
Related papers
- Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM Quantum Computers is described covering both the QPU and the rest of the full-stack quantum computer.
The focus is on a 20-qubit quantum computer featuring the Garnet QPU and its architecture, which we will scale up to 150 qubits.
We present QPU and system-level benchmarks, including a median 2-qubit gate fidelity of 99.5% and genuinely entangling all 20 qubits in a Greenberger-Horne-Zeilinger (GHZ) state.
arXiv Detail & Related papers (2024-08-22T14:26:10Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
arXiv Detail & Related papers (2024-03-09T07:38:45Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Integration of Quantum Accelerators with High Performance Computing -- A
Review of Quantum Programming Tools [0.8477185635891722]
This study aims to characterize existing quantum programming tools (QPTs) from an HPC perspective.
It investigates if existing QPTs have the potential to be efficiently integrated with classical computing models.
This work structures a set of criteria into an analysis blueprint that enables HPC scientists to assess whether a QPT is suitable for the quantum-accelerated classical application.
arXiv Detail & Related papers (2023-09-12T12:24:12Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Open Source Variational Quantum Eigensolver Extension of the Quantum
Learning Machine (QLM) for Quantum Chemistry [0.0]
We introduce a novel open-source QC package, denoted Open-VQE, providing tools for using and developing chemically-inspired adaptive methods.
It is able to use the Atos Quantum Learning Machine (QLM), a general programming framework enabling to write, optimize simulate computing programs.
Along with OpenVQE, we introduce myQLMFermion, a new open-source module (that includes the key QLM ressources that are important for QC developments)
arXiv Detail & Related papers (2022-06-17T14:24:22Z) - Improved variational quantum eigensolver via quasi-dynamical evolution [0.0]
The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm designed for current and near-term quantum devices.
There are problems with VQE that forbid a favourable scaling towards quantum advantage.
We propose and extensively test a quantum annealing inspired algorithm that supplements VQE.
The improved VQE avoids barren plateaus, exits local minima, and works with low-depth circuits.
arXiv Detail & Related papers (2022-02-21T11:21:44Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - CutQC: Using Small Quantum Computers for Large Quantum Circuit
Evaluations [18.78105450344374]
This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers.
CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices.
In real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers.
arXiv Detail & Related papers (2020-12-03T23:52:04Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.