Quantum information with quantum-like bits
- URL: http://arxiv.org/abs/2408.06485v5
- Date: Wed, 29 Jan 2025 18:52:48 GMT
- Title: Quantum information with quantum-like bits
- Authors: Graziano Amati, Gregory D. Scholes,
- Abstract summary: We show how arbitrary gates can be implemented by manipulating many-body correlations.
This suggests the possibility of quantum-like information processing on a special class of many-body classical systems.
- Score: 0.0
- License:
- Abstract: In previous work we have proposed a construction of quantum-like bits that could endow a large synchronizing classical system, for example of oscillators, with quantum-like function that is not compromised by decoherence. In the present paper we investigate further this platform of quantum-like states. Firstly, we discuss a general protocol on how to construct classical synchronizing networks that allow for emergent states. We then study how gates can be implemented on those states. This suggests the possibility of quantum-like information processing on a special class of many-body classical systems. Finally, we show that our approach allows for non-Kolmogorov interference, a feature that separates our model from a classical probabilistic system. This paper aims to explore the mathematical structure of quantum-like resources distilled from classical synchronizing systems, and shows how arbitrary gates can be implemented by manipulating many-body correlations.
Related papers
- Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.
We show that no such simulation exists, thereby certifying quantum coherence.
Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum synchronization via Active-Passive-Decomposition configuration:
An open quantum system study [10.661359913434032]
We show that two or more quantum systems may be synchronized when the quantum systems of interest are embedded in dissipative environments.
We numerically show in an optomechanical setup that the complete synchronization can be realized in quantum mechanical resonators.
arXiv Detail & Related papers (2023-11-15T05:04:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement of a quantum system with a classical apparatus using
ensembles on configuration space [0.48733623015338234]
We use the approach of ensembles on configurations space to give a detailed account of a classical apparatus measuring the position of a quantum particle.
We show that the probability of the pointer of the classical apparatus is left in a state that corresponds to the probability of the quantum particle.
Since this formalism incorporates uncertainties and finite measurement precision, it is well suited for metrological applications.
arXiv Detail & Related papers (2022-05-19T15:48:12Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Quantum systems simulatability through classical networks [0.0]
We have shown that quantum systems on finite-dimensional Hilbert spaces are equivalent under local transformations.
This result can be applied to the field of simulation of quantum systems.
arXiv Detail & Related papers (2021-12-06T15:57:53Z) - Phase diagram of quantum generalized Potts-Hopfield neural networks [0.0]
We introduce and analyze an open quantum generalization of the q-state Potts-Hopfield neural network.
The dynamics of this many-body system is formulated in terms of a Markovian master equation of Lindblad type.
arXiv Detail & Related papers (2021-09-21T12:48:49Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.