A Perspective on Large Language Models, Intelligent Machines, and Knowledge Acquisition
- URL: http://arxiv.org/abs/2408.06598v1
- Date: Tue, 13 Aug 2024 03:25:49 GMT
- Title: A Perspective on Large Language Models, Intelligent Machines, and Knowledge Acquisition
- Authors: Vladimir Cherkassky, Eng Hock Lee,
- Abstract summary: Large Language Models (LLMs) are known for their remarkable ability to generate 'knowledge'
However, there is a huge gap between LLM's and human capabilities for understanding abstract concepts and reasoning.
We discuss these issues in a larger philosophical context of human knowledge acquisition and the Turing test.
- Score: 0.6138671548064355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are known for their remarkable ability to generate synthesized 'knowledge', such as text documents, music, images, etc. However, there is a huge gap between LLM's and human capabilities for understanding abstract concepts and reasoning. We discuss these issues in a larger philosophical context of human knowledge acquisition and the Turing test. In addition, we illustrate the limitations of LLMs by analyzing GPT-4 responses to questions ranging from science and math to common sense reasoning. These examples show that GPT-4 can often imitate human reasoning, even though it lacks understanding. However, LLM responses are synthesized from a large LLM model trained on all available data. In contrast, human understanding is based on a small number of abstract concepts. Based on this distinction, we discuss the impact of LLMs on acquisition of human knowledge and education.
Related papers
- Large Language Models as a Tool for Mining Object Knowledge [0.42970700836450487]
Large language models fall short as trustworthy intelligent systems due to opacity of basis for their answers and tendency to confabulate facts when questioned.
This paper investigates explicit knowledge about common artifacts in the everyday world.
We produce a repository of data on the parts and materials of about 2,300 objects and their subtypes.
This contribution to knowledge mining should prove useful to AI research on reasoning about object structure and composition.
arXiv Detail & Related papers (2024-10-16T18:46:02Z) - Can Large Language Models Understand DL-Lite Ontologies? An Empirical Study [10.051572826948762]
Large models (LLMs) have shown significant achievements in solving a wide range of tasks.
We empirically analyze the LLMs' capability of understanding Description Logic (DL-Lite)
We find that LLMs understand formal syntax and model-theoretic semantics of concepts and roles.
arXiv Detail & Related papers (2024-06-25T13:16:34Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
This study investigates the capabilities and risks of Large Language Models (LLMs)
It uses the innovative parallels between the statistical patterns of word relationships within LLMs and Martin Heidegger's concepts of "ready-to-hand" and "present-at-hand"
Our findings reveal that while LLMs possess the capability for Direct Explicative Reasoning and Pseudo Rational Reasoning, they fall short in authentic rational reasoning and have no creative reasoning capabilities.
arXiv Detail & Related papers (2024-03-05T19:40:53Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Towards Concept-Aware Large Language Models [56.48016300758356]
Concepts play a pivotal role in various human cognitive functions, including learning, reasoning and communication.
There is very little work on endowing machines with the ability to form and reason with concepts.
In this work, we analyze how well contemporary large language models (LLMs) capture human concepts and their structure.
arXiv Detail & Related papers (2023-11-03T12:19:22Z) - POSQA: Probe the World Models of LLMs with Size Comparisons [38.30479784257936]
Embodied language comprehension emphasizes that language understanding is not solely a matter of mental processing in the brain.
With the explosive growth of Large Language Models (LLMs) and their already ubiquitous presence in our daily lives, it is becoming increasingly necessary to verify their real-world understanding.
arXiv Detail & Related papers (2023-10-20T10:05:01Z) - Democratizing Reasoning Ability: Tailored Learning from Large Language
Model [97.4921006089966]
We propose a tailored learning approach to distill such reasoning ability to smaller LMs.
We exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm.
To exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes.
arXiv Detail & Related papers (2023-10-20T07:50:10Z) - Do Large Language Models Know What They Don't Know? [74.65014158544011]
Large language models (LLMs) have a wealth of knowledge that allows them to excel in various Natural Language Processing (NLP) tasks.
Despite their vast knowledge, LLMs are still limited by the amount of information they can accommodate and comprehend.
This study aims to evaluate LLMs' self-knowledge by assessing their ability to identify unanswerable or unknowable questions.
arXiv Detail & Related papers (2023-05-29T15:30:13Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Are LLMs the Master of All Trades? : Exploring Domain-Agnostic Reasoning
Skills of LLMs [0.0]
This study aims to investigate the performance of large language models (LLMs) on different reasoning tasks.
My findings indicate that LLMs excel at analogical and moral reasoning, yet struggle to perform as proficiently on spatial reasoning tasks.
arXiv Detail & Related papers (2023-03-22T22:53:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.