論文の概要: TimeBridge: Better Diffusion Prior Design with Bridge Models for Time Series Generation
- arxiv url: http://arxiv.org/abs/2408.06672v2
- Date: Thu, 12 Jun 2025 01:37:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 17:54:42.812134
- Title: TimeBridge: Better Diffusion Prior Design with Bridge Models for Time Series Generation
- Title(参考訳): TimeBridge: 時系列生成のためのブリッジモデルによる拡散事前設計の改善
- Authors: Jinseong Park, Seungyun Lee, Woojin Jeong, Yujin Choi, Jaewook Lee,
- Abstract要約: 時系列生成はシミュレーション、データ拡張、仮説テストといった現実世界のアプリケーションで広く利用されている。
拡散モデルは、時系列生成に対する事実上のアプローチとして現れ、多様な合成シナリオを可能にしている。
本研究では、拡散ブリッジを用いて時系列データを柔軟に合成し、選択した事前とデータ分布の間の経路を学習するフレームワークであるTimeBridgeを提案する。
- 参考スコア(独自算出の注目度): 3.2066708654182743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series generation is widely used in real-world applications such as simulation, data augmentation, and hypothesis testing. Recently, diffusion models have emerged as the de facto approach to time series generation, enabling diverse synthesis scenarios. However, the fixed standard-Gaussian diffusion prior may be ill-suited for general time series data, such as temporal order and fixed points. In this paper, we propose TimeBridge, a framework that flexibly synthesizes time series data by using diffusion bridges to learn paths between a chosen prior and the data distribution. We then explore several prior designs tailored to time series synthesis. Our framework covers (i) data- and time-dependent priors for unconditional generation and (ii) scale-preserving priors for conditional generation. Experiments show that our framework with data-driven priors outperforms standard diffusion models on time series generation.
- Abstract(参考訳): 時系列生成はシミュレーション、データ拡張、仮説テストといった現実世界のアプリケーションで広く利用されている。
近年,拡散モデルが時系列生成のデファクトアプローチとして登場し,多様な合成シナリオが実現されている。
しかし、固定標準ガウス拡散は時間次数や固定点のような一般的な時系列データには不適当である。
本稿では、拡散ブリッジを用いて時系列データを柔軟に合成し、選択した事前とデータ分布の間の経路を学習するフレームワークであるTimeBridgeを提案する。
その後、時系列合成に適したいくつかの先行設計を探索する。
私たちのフレームワークがカバーする
一 無条件発生のためのデータ及び時間に依存した先行
(ii)条件生成のためのスケール保存先
実験により、データ駆動の先行するフレームワークは、時系列生成における標準拡散モデルより優れていることが示された。
関連論文リスト
- MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
時系列予測は、周波数の異なる周期特性から導かれる。
マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-11T11:40:14Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - TimeAutoDiff: Combining Autoencoder and Diffusion model for time series tabular data synthesizing [13.385264002435145]
本稿では、遅延拡散モデルのパワーを活用して、合成時系列表データを生成する。
可変オートエンコーダ(VAE)と拡散確率モデル(DDPM)のアイデアを組み合わせることでこの問題に対処する。
textttTimeAutoDiffという名前の私たちのモデルは、(1)汎用性:単一から複数シーケンスのデータセットの幅広い時系列データを処理できる能力など、いくつかの大きな利点があります。
論文 参考訳(メタデータ) (2024-06-23T06:32:27Z) - Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting [8.232475807691255]
本稿では,データ駆動型事前知識を各ステップで学習する新しい拡散(StochDiff)モデルを提案する。
学習された事前知識は、複雑な時間的ダイナミクスとデータ固有の不確実性を捉えるのに役立つ。
論文 参考訳(メタデータ) (2024-06-05T00:13:38Z) - Towards Foundation Time Series Model: To Synthesize Or Not To
Synthesize? [2.8707270250981094]
本論では,合成データに基づく基礎モデルの学習に有利であるか,限られた実例のみを利用する方がよいか,という課題について考察する。
本実験は,通常の時系列のみを対象として実施し,実時間時系列のみを活用することを優先して述べる。
論文 参考訳(メタデータ) (2024-03-04T23:03:17Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
テンポラリ・コンポラブル・ディフューザ(TCD)を用いた実効時間条件拡散モデルを提案する。
TCDは、相互作用シーケンスから時間情報を抽出し、時間条件で生成を明示的にガイドする。
提案手法は,従来のSOTAベースラインと比較して最高の性能を達成または一致させる。
論文 参考訳(メタデータ) (2023-06-08T02:12:26Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - GT-GAN: General Purpose Time Series Synthesis with Generative
Adversarial Networks [11.157586814297138]
本稿では,通常の時系列データと不規則時系列データを合成する汎用モデルを提案する。
我々は,多くの関連技術が注意深く1つのフレームワークに統合される,生成的対向的ネットワークベースの手法を設計する。
論文 参考訳(メタデータ) (2022-10-05T06:18:06Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
時系列データ(英: time series)とは、時系列データの一種で、時系列で記録された観測の集合である。
既存のディープラーニング技術では、時系列解析にジェネリックシーケンスモデルを使用しており、そのユニークな性質を無視している。
本稿では,新しいニューラルネットワークアーキテクチャを提案し,時系列予測問題に適用し,時間的モデリングのための複数の解像度でサンプル畳み込みと相互作用を行う。
論文 参考訳(メタデータ) (2021-06-17T08:15:04Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。