Towards Cross-Domain Single Blood Cell Image Classification via Large-Scale LoRA-based Segment Anything Model
- URL: http://arxiv.org/abs/2408.06716v1
- Date: Tue, 13 Aug 2024 08:20:47 GMT
- Title: Towards Cross-Domain Single Blood Cell Image Classification via Large-Scale LoRA-based Segment Anything Model
- Authors: Yongcheng Li, Lingcong Cai, Ying Lu, Yupeng Zhang, Jingyan Jiang, Genan Dai, Bowen Zhang, Jingzhou Cao, Xiangzhong Zhang, Xiaomao Fan,
- Abstract summary: We present a novel approach for classifying blood cell images known as BC-SAM.
BC-SAM incorporates a fine-tuning technique using LoRA, allowing it to extract general image embeddings from blood cell images.
To enhance the applicability of BC-SAM across different blood cell image datasets, we introduce an unsupervised cross-domain autoencoder.
- Score: 6.41413650593808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate classification of blood cells plays a vital role in hematological analysis as it aids physicians in diagnosing various medical conditions. In this study, we present a novel approach for classifying blood cell images known as BC-SAM. BC-SAM leverages the large-scale foundation model of Segment Anything Model (SAM) and incorporates a fine-tuning technique using LoRA, allowing it to extract general image embeddings from blood cell images. To enhance the applicability of BC-SAM across different blood cell image datasets, we introduce an unsupervised cross-domain autoencoder that focuses on learning intrinsic features while suppressing artifacts in the images. To assess the performance of BC-SAM, we employ four widely used machine learning classifiers (Random Forest, Support Vector Machine, Artificial Neural Network, and XGBoost) to construct blood cell classification models and compare them against existing state-of-the-art methods. Experimental results conducted on two publicly available blood cell datasets (Matek-19 and Acevedo-20) demonstrate that our proposed BC-SAM achieves a new state-of-the-art result, surpassing the baseline methods with a significant improvement. The source code of this paper is available at https://github.com/AnoK3111/BC-SAM.
Related papers
- Domain-invariant Representation Learning via Segment Anything Model for Blood Cell Classification [10.237028514911284]
We propose a novel framework of domain-invariant representation learning (DoRL) for blood cell classification.
The advantage of DoRL is that it can extract domain-invariant representations from various blood cell datasets in an unsupervised manner.
Our proposed DoRL achieves a new state-of-the-art cross-domain performance, surpassing existing methods by a significant margin.
arXiv Detail & Related papers (2024-08-14T11:24:13Z) - Boosting Medical Image Classification with Segmentation Foundation Model [19.41887842350247]
The Segment Anything Model (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images.
No studies have shown how to harness the power of SAM for medical image classification.
We introduce SAMAug-C, an innovative augmentation method based on SAM for augmenting classification datasets.
arXiv Detail & Related papers (2024-06-16T17:54:49Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
We introduce a novel approach for white blood cell classification based on neural cellular automata (NCA)
Our NCA-based method is significantly smaller in terms of parameters and exhibits robustness to domain shifts.
Our results demonstrate that NCA can be used for image classification, and they address key challenges of conventional methods.
arXiv Detail & Related papers (2024-04-08T14:59:53Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Classification of White Blood Cells Using Machine and Deep Learning
Models: A Systematic Review [8.452349885923507]
Machine learning (ML) and deep learning (DL) models have been employed to significantly improve analyses of medical imagery.
Model predictions and classifications assist diagnoses of various cancers and tumors.
This review presents an in-depth analysis of modern techniques applied within the domain of medical image analysis for white blood cell classification.
arXiv Detail & Related papers (2023-08-11T06:32:25Z) - Cross-modulated Few-shot Image Generation for Colorectal Tissue
Classification [58.147396879490124]
Our few-shot generation method, named XM-GAN, takes one base and a pair of reference tissue images as input and generates high-quality yet diverse images.
To the best of our knowledge, we are the first to investigate few-shot generation in colorectal tissue images.
arXiv Detail & Related papers (2023-04-04T17:50:30Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
arXiv Detail & Related papers (2021-10-18T17:56:07Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.