Enhancing Machine Learning Performance through Intelligent Data Quality Assessment: An Unsupervised Data-centric Framework
- URL: http://arxiv.org/abs/2502.13198v1
- Date: Tue, 18 Feb 2025 18:01:36 GMT
- Title: Enhancing Machine Learning Performance through Intelligent Data Quality Assessment: An Unsupervised Data-centric Framework
- Authors: Manal Rahal, Bestoun S. Ahmed, Gergely Szabados, Torgny Fornstedt, Jorgen Samuelsson,
- Abstract summary: Poor data quality limits the advantageous power of Machine Learning (ML)
We propose an intelligent data-centric evaluation framework that can identify high-quality data and improve the performance of an ML system.
- Score: 0.0
- License:
- Abstract: Poor data quality limits the advantageous power of Machine Learning (ML) and weakens high-performing ML software systems. Nowadays, data are more prone to the risk of poor quality due to their increasing volume and complexity. Therefore, tedious and time-consuming work goes into data preparation and improvement before moving further in the ML pipeline. To address this challenge, we propose an intelligent data-centric evaluation framework that can identify high-quality data and improve the performance of an ML system. The proposed framework combines the curation of quality measurements and unsupervised learning to distinguish high- and low-quality data. The framework is designed to integrate flexible and general-purpose methods so that it is deployed in various domains and applications. To validate the outcomes of the designed framework, we implemented it in a real-world use case from the field of analytical chemistry, where it is tested on three datasets of anti-sense oligonucleotides. A domain expert is consulted to identify the relevant quality measurements and evaluate the outcomes of the framework. The results show that the quality-centric data evaluation framework identifies the characteristics of high-quality data that guide the conduct of efficient laboratory experiments and consequently improve the performance of the ML system.
Related papers
- Efficient Multi-Agent System Training with Data Influence-Oriented Tree Search [59.75749613951193]
We propose Data Influence-oriented Tree Search (DITS) to guide both tree search and data selection.
By leveraging influence scores, we effectively identify the most impactful data for system improvement.
We derive influence score estimation methods tailored for non-differentiable metrics.
arXiv Detail & Related papers (2025-02-02T23:20:16Z) - Evaluating Language Models as Synthetic Data Generators [74.80905172696366]
AgoraBench is a benchmark that provides standardized settings and metrics to evaluate LMs' data generation abilities.
Through synthesizing 1.26 million training instances using 6 LMs and training 99 student models, we uncover key insights about LMs' data generation capabilities.
arXiv Detail & Related papers (2024-12-04T19:20:32Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - A Theoretical Framework for AI-driven data quality monitoring in high-volume data environments [1.2753215270475886]
This paper presents a theoretical framework for an AI-driven data quality monitoring system designed to address the challenges of maintaining data quality in high-volume environments.
We examine the limitations of traditional methods in managing the scale, velocity, and variety of big data and propose a conceptual approach leveraging advanced machine learning techniques.
Key components include an intelligent data ingestion layer, adaptive preprocessing mechanisms, context-aware feature extraction, and AI-based quality assessment modules.
arXiv Detail & Related papers (2024-10-11T07:06:36Z) - Adaptive Data Quality Scoring Operations Framework using Drift-Aware Mechanism for Industrial Applications [0.0]
We introduce a novel framework to address the challenges posed by dynamic quality dimensions in industrial data streams.
The framework integrates a dynamic change detector mechanism that actively monitors and adapts to changes in data quality.
The experimental results reveal high predictive performance and efficient processing time, highlighting its effectiveness in practical quality-driven AI applications.
arXiv Detail & Related papers (2024-08-13T08:32:06Z) - AI-Driven Frameworks for Enhancing Data Quality in Big Data Ecosystems: Error_Detection, Correction, and Metadata Integration [0.0]
This thesis proposes a novel set of interconnected frameworks aimed at enhancing big data quality comprehensively.
Firstly, we introduce new quality metrics and a weighted scoring system for precise data quality assessment.
Thirdly, we present a generic framework for detecting various quality anomalies using AI models.
arXiv Detail & Related papers (2024-05-06T21:36:45Z) - A Novel Metric for Measuring Data Quality in Classification Applications
(extended version) [0.0]
We introduce and explain a novel metric to measure data quality.
This metric is based on the correlated evolution between the classification performance and the deterioration of data.
We provide an interpretation of each criterion and examples of assessment levels.
arXiv Detail & Related papers (2023-12-13T11:20:09Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - QI2 -- an Interactive Tool for Data Quality Assurance [63.379471124899915]
The planned AI Act from the European commission defines challenging legal requirements for data quality.
We introduce a novel approach that supports the data quality assurance process of multiple data quality aspects.
arXiv Detail & Related papers (2023-07-07T07:06:38Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.