Enhancing Diabetic Retinopathy Diagnosis: A Lightweight CNN Architecture for Efficient Exudate Detection in Retinal Fundus Images
- URL: http://arxiv.org/abs/2408.06784v1
- Date: Tue, 13 Aug 2024 10:13:33 GMT
- Title: Enhancing Diabetic Retinopathy Diagnosis: A Lightweight CNN Architecture for Efficient Exudate Detection in Retinal Fundus Images
- Authors: Mujadded Al Rabbani Alif,
- Abstract summary: This paper introduces a novel, lightweight convolutional neural network architecture tailored for automated exudate detection.
We have incorporated domain-specific data augmentations to enhance the model's generalizability.
Our model achieves an impressive F1 score of 90%, demonstrating its efficacy in the early detection of diabetic retinopathy through fundus imaging.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retinal fundus imaging plays an essential role in diagnosing various stages of diabetic retinopathy, where exudates are critical markers of early disease onset. Prompt detection of these exudates is pivotal for enabling optometrists to arrest or significantly decelerate the disease progression. This paper introduces a novel, lightweight convolutional neural network architecture tailored for automated exudate detection, designed to identify these markers efficiently and accurately. To address the challenge of limited training data, we have incorporated domain-specific data augmentations to enhance the model's generalizability. Furthermore, we applied a suite of regularization techniques within our custom architecture to boost diagnostic accuracy while optimizing computational efficiency. Remarkably, this streamlined model contains only 4.73 million parameters a reduction of nearly 60% compared to the standard ResNet-18 model, which has 11.69 million parameters. Despite its reduced complexity, our model achieves an impressive F1 score of 90%, demonstrating its efficacy in the early detection of diabetic retinopathy through fundus imaging.
Related papers
- Controllable retinal image synthesis using conditional StyleGAN and latent space manipulation for improved diagnosis and grading of diabetic retinopathy [0.0]
This paper proposes a framework for controllably generating high-fidelity and diverse DR fundus images.
We achieve comprehensive control over DR severity and visual features within generated images.
We manipulate the DR images generated conditionally on grades, further enhancing the dataset diversity.
arXiv Detail & Related papers (2024-09-11T17:08:28Z) - Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [42.75763279888966]
We present a novel PolarNet+ that uses retinal optical coherence tomography angiography ( OCTA) to discriminate early-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects from controls.
Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation.
We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction.
arXiv Detail & Related papers (2024-08-09T15:10:34Z) - Leveraging Bi-Focal Perspectives and Granular Feature Integration for Accurate Reliable Early Alzheimer's Detection [0.0]
Alzheimer's disease (AD) is the most common neurodegeneration, annually diagnosed in millions of patients.
Traditional CNNs can extract a good amount of low-level information in an image but fail to extract high-level minuscule particles.
We propose a novel Granular Feature Integration method to combine information extraction at different scales combined with an efficient information flow.
arXiv Detail & Related papers (2024-07-15T17:22:16Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Enhancing Diagnostic Reliability of Foundation Model with Uncertainty Estimation in OCT Images [41.002573031087856]
We developed a foundation model with uncertainty estimation (FMUE) to detect 11 retinal conditions on optical coherence tomography ( OCT)
FMUE achieved a higher F1 score of 96.76% than two state-of-the-art algorithms, RETFound and UIOS, and got further improvement with thresholding strategy to 98.44%.
Our model is superior to two ophthalmologists with a higher F1 score (95.17% vs. 61.93% &71.72%)
arXiv Detail & Related papers (2024-06-18T03:04:52Z) - Multi-scale Spatio-temporal Transformer-based Imbalanced Longitudinal
Learning for Glaucoma Forecasting from Irregular Time Series Images [45.894671834869975]
Glaucoma is one of the major eye diseases that leads to progressive optic nerve fiber damage and irreversible blindness.
We introduce the Multi-scale Spatio-temporal Transformer Network (MST-former) based on the transformer architecture tailored for sequential image inputs.
Our method shows excellent generalization capability on the Alzheimer's Disease Neuroimaging Initiative (ADNI) MRI dataset, with an accuracy of 90.3% for mild cognitive impairment and Alzheimer's disease prediction.
arXiv Detail & Related papers (2024-02-21T02:16:59Z) - Convolutional Neural Network Model for Diabetic Retinopathy Feature
Extraction and Classification [6.236743421605786]
We create a novel CNN model and identifies the severity of Diabetic Retinopathy through fundus image input.
We classified 4 known DR features, including micro-aneurysms, cotton wools, exudates, and hemorrhages, through convolutional layers.
Our contribution is an interpretable model with similar accuracy to more complex models.
arXiv Detail & Related papers (2023-10-16T20:09:49Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs [0.0]
We propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time.
Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly.
arXiv Detail & Related papers (2022-02-08T00:43:57Z) - A Residual Encoder-Decoder Network for Segmentation of Retinal
Image-Based Exudates in Diabetic Retinopathy Screening [1.8496844821697171]
We present a convolutional neural network with residual skip connection for the segmentation of exudates in retinal images.
The proposed network can robustly segment exudates with high accuracy, which makes it suitable for diabetic retinopathy screening.
arXiv Detail & Related papers (2022-01-16T04:08:17Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.