論文の概要: On a Scale-Invariant Approach to Bundle Recommendations in Candy Crush Saga
- arxiv url: http://arxiv.org/abs/2408.06799v2
- Date: Wed, 14 Aug 2024 05:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 12:12:37.717469
- Title: On a Scale-Invariant Approach to Bundle Recommendations in Candy Crush Saga
- Title(参考訳): キャンディクラッシュサガにおけるバンドル勧告のスケール不変的アプローチについて
- Authors: Styliani Katsarou, Francesca Carminati, Martin Dlask, Marta Braojos, Lavena Patra, Richard Perkins, Carlos Garcia Ling, Maria Paskevich,
- Abstract要約: 本稿では,モバイルゲームシナリオにおけるアイテムレコメンデーション作成における注意モデルの利用について述べる。
この手法はその後、Candy Crush Sagaのバンドルレコメンデーションに適用される。
提案手法は,クリック率を30%,テイクレートを40%以上向上させ,ユーザのエンゲージメントを30%向上させることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A good understanding of player preferences is crucial for increasing content relevancy, especially in mobile games. This paper illustrates the use of attentive models for producing item recommendations in a mobile game scenario. The methodology comprises a combination of supervised and unsupervised approaches to create user-level recommendations while introducing a novel scale-invariant approach to the prediction. The methodology is subsequently applied to a bundle recommendation in Candy Crush Saga. The strategy of deployment, maintenance, and monitoring of ML models that are scaled up to serve millions of users is presented, along with the best practices and design patterns adopted to minimize technical debt typical of ML systems. The recommendation approach is evaluated both offline and online, with a focus on understanding the increase in engagement, click- and take rates, novelty effects, recommendation diversity, and the impact of degenerate feedback loops. We have demonstrated that the recommendation enhances user engagement by 30% concerning click rate and by more than 40% concerning take rate. In addition, we empirically quantify the diminishing effects of recommendation accuracy on user engagement.
- Abstract(参考訳): プレイヤーの好みをよく理解することは、特にモバイルゲームにおいてコンテンツ関連性を高めるために不可欠である。
本稿では,モバイルゲームシナリオにおけるアイテムレコメンデーション作成における注意モデルの利用について述べる。
この手法は、ユーザレベルのレコメンデーションを作成するための教師なしアプローチと教師なしアプローチを組み合わせたもので、予測に新しいスケール不変アプローチを導入している。
この手法はその後、Candy Crush Sagaのバンドルレコメンデーションに適用される。
数百万のユーザに提供するようにスケールアップされたMLモデルのデプロイメント、メンテナンス、監視の戦略に加えて、MLシステムの技術的負債を最小限に抑えるためのベストプラクティスと設計パターンが紹介されている。
推奨アプローチはオフラインとオンラインの両方で評価され、エンゲージメントの増加、クリック・アンド・テイクレート、ノベルティ効果、レコメンデーションの多様性、退行フィードバックループの影響を理解することに焦点を当てている。
提案手法は,クリック率を30%,テイクレートを40%以上向上させ,ユーザのエンゲージメントを30%向上させることを示した。
さらに,ユーザのエンゲージメントに対する推奨精度の低下効果を実証的に定量化する。
関連論文リスト
- Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
そこで本研究では,ソフトラベルを活用することで,目的を2つの側面として捉えるために,分離されたソフトラベル最適化フレームワークを提案する。
本稿では,ラベル伝搬アルゴリズムをモデル化したソフトラベル生成アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-09T04:20:15Z) - LLM-Powered Explanations: Unraveling Recommendations Through Subgraph Reasoning [40.53821858897774]
本稿では,Large Language Models (LLMs) とKGs (KGs) を相乗する新しいレコメンデータを紹介し,そのレコメンデーションを強化し,解釈可能な結果を提供する。
提案手法は,レコメンデータシステムの有効性と解釈性を両立させる。
論文 参考訳(メタデータ) (2024-06-22T14:14:03Z) - Harm Mitigation in Recommender Systems under User Preference Dynamics [16.213153879446796]
本稿では,レコメンデーション,ユーザ関心,有害コンテンツとの相互作用を考慮したレコメンデーションシステムについて考察する。
クリックスルー率(CTR)の最大化と害軽減のトレードオフを確立するためのレコメンデーションポリシーを模索する。
論文 参考訳(メタデータ) (2024-06-14T09:52:47Z) - How to Diversify any Personalized Recommender? A User-centric Pre-processing approach [0.0]
推薦性能を維持しつつ,Top-Nレコメンデーションの多様性を向上させるための新しいアプローチを提案する。
当社のアプローチでは,ユーザを幅広いコンテンツカテゴリやトピックに公開するための,ユーザ中心の事前処理戦略を採用しています。
論文 参考訳(メタデータ) (2024-05-03T15:02:55Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
フラットローカルミニマの新しい視点からマルチモーダルリコメンデータシステムの解析を行う。
我々はミラーグラディエント(MG)と呼ばれる簡潔で効果的な勾配戦略を提案する。
提案したMGは、既存の堅牢なトレーニング手法を補完し、多様な高度なレコメンデーションモデルに容易に拡張できることが判明した。
論文 参考訳(メタデータ) (2024-02-17T12:27:30Z) - Recommendation with User Active Disclosing Willingness [20.306413327597603]
本研究では,ユーザが異なる行動を公開する上で,その「意志」を示すことを許される,新しい推薦パラダイムについて検討する。
我々は,推薦品質とユーザ開示意欲のバランスをとる上で,モデルの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-10-25T04:43:40Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Personalized Bundle Recommendation in Online Games [24.16330519588066]
本稿では,バンドルレコメンデーション(bundle recommendation)という,実用的かつあまり検討されていないレコメンデーション問題について述べる。
歴史的相互作用から構築した3部グラフ上のリンク予測問題として定式化する。
3つの公開データセットと1つの産業ゲームデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2021-04-12T09:28:16Z) - Latent Unexpected Recommendations [89.2011481379093]
ユーザとアイテムの埋め込みの潜伏した空間における予測性をモデル化し、新しいレコメンデーションと歴史的購入の間の隠れた複雑な関係を捉えることを提案する。
さらに,ハイブリッドユーティリティ機能の構築と,提案モデルに基づく予期せぬ推薦を行うための新しい潜在クロージャ(LC)手法を開発した。
論文 参考訳(メタデータ) (2020-07-27T02:39:30Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。