On a Scale-Invariant Approach to Bundle Recommendations in Candy Crush Saga
- URL: http://arxiv.org/abs/2408.06799v2
- Date: Wed, 14 Aug 2024 05:44:37 GMT
- Title: On a Scale-Invariant Approach to Bundle Recommendations in Candy Crush Saga
- Authors: Styliani Katsarou, Francesca Carminati, Martin Dlask, Marta Braojos, Lavena Patra, Richard Perkins, Carlos Garcia Ling, Maria Paskevich,
- Abstract summary: This paper illustrates the use of attentive models for producing item recommendations in a mobile game scenario.
The methodology is subsequently applied to a bundle recommendation in Candy Crush Saga.
We have demonstrated that the recommendation enhances user engagement by 30% concerning click rate and by more than 40% concerning take rate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A good understanding of player preferences is crucial for increasing content relevancy, especially in mobile games. This paper illustrates the use of attentive models for producing item recommendations in a mobile game scenario. The methodology comprises a combination of supervised and unsupervised approaches to create user-level recommendations while introducing a novel scale-invariant approach to the prediction. The methodology is subsequently applied to a bundle recommendation in Candy Crush Saga. The strategy of deployment, maintenance, and monitoring of ML models that are scaled up to serve millions of users is presented, along with the best practices and design patterns adopted to minimize technical debt typical of ML systems. The recommendation approach is evaluated both offline and online, with a focus on understanding the increase in engagement, click- and take rates, novelty effects, recommendation diversity, and the impact of degenerate feedback loops. We have demonstrated that the recommendation enhances user engagement by 30% concerning click rate and by more than 40% concerning take rate. In addition, we empirically quantify the diminishing effects of recommendation accuracy on user engagement.
Related papers
- Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - LLM-Powered Explanations: Unraveling Recommendations Through Subgraph Reasoning [40.53821858897774]
We introduce a novel recommender that synergies Large Language Models (LLMs) and Knowledge Graphs (KGs) to enhance the recommendation and provide interpretable results.
Our approach significantly enhances both the effectiveness and interpretability of recommender systems.
arXiv Detail & Related papers (2024-06-22T14:14:03Z) - Harm Mitigation in Recommender Systems under User Preference Dynamics [16.213153879446796]
We consider a recommender system that takes into account the interplay between recommendations, user interests, and harmful content.
We seek recommendation policies that establish a tradeoff between maximizing click-through rate (CTR) and mitigating harm.
arXiv Detail & Related papers (2024-06-14T09:52:47Z) - How to Diversify any Personalized Recommender? A User-centric Pre-processing approach [0.0]
We introduce a novel approach to improve the diversity of Top-N recommendations while maintaining recommendation performance.
Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics.
arXiv Detail & Related papers (2024-05-03T15:02:55Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
We analyze multimodal recommender systems from the novel perspective of flat local minima.
We propose a concise yet effective gradient strategy called Mirror Gradient (MG)
We find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models.
arXiv Detail & Related papers (2024-02-17T12:27:30Z) - Recommendation with User Active Disclosing Willingness [20.306413327597603]
We study a novel recommendation paradigm, where the users are allowed to indicate their "willingness" on disclosing different behaviors.
We conduct extensive experiments to demonstrate the effectiveness of our model on balancing the recommendation quality and user disclosing willingness.
arXiv Detail & Related papers (2022-10-25T04:43:40Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior.
We propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference.
We show that CAFL improves recommendation quality when compared to prior correction methods.
arXiv Detail & Related papers (2022-07-04T17:58:39Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - Personalized Bundle Recommendation in Online Games [24.16330519588066]
This paper aims at a practical but less explored recommendation problem named bundle recommendation.
We formalize it as a link prediction problem on a user-item-bundle tripartite graph constructed from the historical interactions.
Experiments on three public datasets and one industrial game dataset demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-04-12T09:28:16Z) - Latent Unexpected Recommendations [89.2011481379093]
We propose to model unexpectedness in the latent space of user and item embeddings, which allows to capture hidden and complex relations between new recommendations and historic purchases.
In addition, we develop a novel Latent Closure (LC) method to construct hybrid utility function and provide unexpected recommendations based on the proposed model.
arXiv Detail & Related papers (2020-07-27T02:39:30Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.