論文の概要: Efficient Human-Object-Interaction (EHOI) Detection via Interaction Label Coding and Conditional Decision
- arxiv url: http://arxiv.org/abs/2408.07018v1
- Date: Tue, 13 Aug 2024 16:34:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 16:55:31.490445
- Title: Efficient Human-Object-Interaction (EHOI) Detection via Interaction Label Coding and Conditional Decision
- Title(参考訳): 対話ラベル符号化と条件決定による効率的なヒューマン・オブジェクト・インタラクション(EHOI)検出
- Authors: Tsung-Shan Yang, Yun-Cheng Wang, Chengwei Wei, Suya You, C. -C. Jay Kuo,
- Abstract要約: 本研究では, 検出性能, 推論複雑性, 数学的透明性のバランスを良くするために, 効率の良いHOI検出器を提案する。
我々の貢献は、稀な相互作用のケースをエンコードするためのエラー訂正符号(ECC)の適用を含む。
実験により,ECC符号化対話ラベルの利点と検出性能とEHOI法の複雑さのバランスが良好であることが示された。
- 参考スコア(独自算出の注目度): 33.59153869330463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human-Object Interaction (HOI) detection is a fundamental task in image understanding. While deep-learning-based HOI methods provide high performance in terms of mean Average Precision (mAP), they are computationally expensive and opaque in training and inference processes. An Efficient HOI (EHOI) detector is proposed in this work to strike a good balance between detection performance, inference complexity, and mathematical transparency. EHOI is a two-stage method. In the first stage, it leverages a frozen object detector to localize the objects and extract various features as intermediate outputs. In the second stage, the first-stage outputs predict the interaction type using the XGBoost classifier. Our contributions include the application of error correction codes (ECCs) to encode rare interaction cases, which reduces the model size and the complexity of the XGBoost classifier in the second stage. Additionally, we provide a mathematical formulation of the relabeling and decision-making process. Apart from the architecture, we present qualitative results to explain the functionalities of the feedforward modules. Experimental results demonstrate the advantages of ECC-coded interaction labels and the excellent balance of detection performance and complexity of the proposed EHOI method.
- Abstract(参考訳): ヒューマン・オブジェクト・インタラクション(HOI)検出は画像理解の基本的な課題である。
ディープラーニングに基づくHOI法は平均平均精度(mAP)の点で高い性能を提供するが、これらは計算コストが高く、トレーニングや推論プロセスでは不透明である。
本研究では, 検出性能, 推論複雑性, 数学的透明性のバランスを良くするために, 効率の良いHOI検出器を提案する。
EHOIは二段階法である。
最初の段階では、凍った物体検出器を利用して物体を局在させ、中間出力として様々な特徴を抽出する。
第2段階では、第1段階の出力はXGBoost分類器を用いて相互作用タイプを予測する。
我々の貢献は、稀な相互作用のケースを符号化するためにエラー訂正符号(ECC)を適用することを含み、これは第2段階におけるXGBoost分類器のモデルサイズと複雑さを減少させる。
また,決定過程の数学的定式化も行う。
アーキテクチャとは別に、フィードフォワードモジュールの機能を説明する定性的な結果を示す。
実験により,ECC符号化対話ラベルの利点と検出性能とEHOI法の複雑さのバランスが良好であることが示された。
関連論文リスト
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
オープンセットのシナリオでは、ラベルなしデータセットには、イン・ディストリビューション(ID)クラスとアウト・オブ・ディストリビューション(OOD)クラスの両方が含まれている。
このような設定で半教師付き検出器を適用すると、OODクラスをIDクラスとして誤分類する可能性がある。
我々は、CFL-Detector(Collaborative Feature-Logits Detector)と呼ばれるシンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-11-20T02:57:35Z) - Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
バイナリコード類似度検出(BCSD)は、脆弱性検出、マルウェア分析、コードの再利用識別など、多くの分野で重要な役割を果たしている。
本稿では,LLVM-IRと高レベルのセマンティック抽象化を利用して,コンパイル差を緩和するIRBinDiffを提案する。
IRBinDiffは1対1の比較と1対多の検索シナリオにおいて,他の主要なBCSD手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-24T09:09:20Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
人々をローカライズし、ビデオからアクションを認識することは、ハイレベルなビデオ理解にとって難しい課題だ。
既存の手法は主に2段階ベースで、1段階は人物境界ボックス生成、もう1段階は行動認識を行う。
本稿では、時間的行動検出の効率を向上させるために、DOADと呼ばれる分離したワンステージネットワークを提案する。
論文 参考訳(メタデータ) (2023-04-01T08:06:43Z) - UniASM: Binary Code Similarity Detection without Fine-tuning [0.8271859911016718]
バイナリ関数の表現を学習するために,UniASMと呼ばれるトランスフォーマーベースのバイナリコード埋め込みモデルを提案する。
既知の脆弱性検索の現実的なタスクでは、UniASMは現在のベースラインをすべて上回っている。
論文 参考訳(メタデータ) (2022-10-28T14:04:57Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
クラス間の意味的相関を分類ヘッドにエンコードし,重みをHOIの言語埋め込みで初期化する。
我々は,LSE-Sign という新しい損失を,長い尾を持つデータセット上でのマルチラベル学習を強化するために提案する。
我々は,物体検出と人間のポーズを明確なマージンで求める最先端技術よりも優れた,検出不要なHOI分類を可能にする。
論文 参考訳(メタデータ) (2022-03-10T23:35:00Z) - Modulating Localization and Classification for Harmonized Object
Detection [40.82723262074911]
2つのタスクを変調する相互学習フレームワークを提案する。
特に,2つのタスクは,新たな相互ラベル付け戦略によって互いに学習することを余儀なくされる。
COCOデータセットのベースライン検出器に対する大幅なパフォーマンス向上を実現しました。
論文 参考訳(メタデータ) (2021-03-16T10:36:02Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。