論文の概要: Image-Based Leopard Seal Recognition: Approaches and Challenges in Current Automated Systems
- arxiv url: http://arxiv.org/abs/2408.07269v1
- Date: Wed, 14 Aug 2024 03:35:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:25:39.940536
- Title: Image-Based Leopard Seal Recognition: Approaches and Challenges in Current Automated Systems
- Title(参考訳): 画像に基づくLeopardシール認識:現在の自動化システムにおけるアプローチと課題
- Authors: Jorge Yero Salazar, Pablo Rivas, Renato Borras-Chavez, Sarah Kienle,
- Abstract要約: 本稿では,従来の写真を用いた自然の生息地におけるアザラシ認識の課題と進歩について考察する。
ヒョウアザラシ EmphHydrurga leptonyx は南極の生態系において重要な種である。
機械学習の出現、特にビジョントランスフォーマーの応用は、種のモニタリングにおける効率性と精度の新しい時代を告げている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper examines the challenges and advancements in recognizing seals within their natural habitats using conventional photography, underscored by the emergence of machine learning technologies. We used the leopard seal, \emph{Hydrurga leptonyx}, a key species within Antarctic ecosystems, to review the different available methods found. As apex predators, Leopard seals are characterized by their significant ecological role and elusive nature so studying them is crucial to understand the health of their ecosystem. Traditional methods of monitoring seal species are often constrained by the labor-intensive and time-consuming processes required for collecting data, compounded by the limited insights these methods provide. The advent of machine learning, particularly through the application of vision transformers, heralds a new era of efficiency and precision in species monitoring. By leveraging state-of-the-art approaches in detection, segmentation, and recognition within digital imaging, this paper presents a synthesis of the current landscape, highlighting both the cutting-edge methodologies and the predominant challenges faced in accurately identifying seals through photographic data.
- Abstract(参考訳): 本稿では,機械学習技術の出現を背景として,従来の写真を用いた自然の生息地におけるアザラシ認識の課題と進歩について考察する。
南極の生態系における重要な種であるヒョウアザラシ \emph{Hydrurga leptonyx} を用いて、発見された様々な方法について検討した。
アペックス捕食者として、レオパルドのアザラシは生態系の健康を理解するのに不可欠である。
従来のアザラシのモニタリング方法は、データ収集に必要な労働集約的かつ時間を要するプロセスによって制約されることが多い。
機械学習の出現、特にビジョントランスフォーマーの応用は、種のモニタリングにおける効率性と精度の新しい時代を告げている。
本稿では,デジタル画像における検出,セグメンテーション,認識における最先端のアプローチを活用することで,最先端の手法と写真データによるアザラシの正確な識別に直面する主な課題を取り上げ,現在の景観の合成について述べる。
関連論文リスト
- Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data [0.06819010383838325]
カメラトラップは生態研究において大きな新しい機会を提供する。
現在の自動画像解析手法は、影響のある保存結果をサポートするために必要な文脈的豊かさを欠いていることが多い。
本稿では、深層学習に基づく視覚と言語モデルを組み合わせて、カメラトラップのデータを用いた生態報告を改善するための統合的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-21T15:28:52Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
テキストと画像の拡散モデルは、画像認識の恩恵を受ける大きな可能性を示している。
有望ではあるが、拡散生成画像の教師なし学習に特化した調査は不十分である。
上記フリーアテンションマスクをフル活用することで、カスタマイズされたソリューションを導入する。
論文 参考訳(メタデータ) (2023-08-13T10:07:46Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
本稿では,画像中の偽造顔を効率的に検出する,概念的にシンプルだが効果的な方法を提案する。
提案手法は,画像に関する意味の高い意味情報を提供するセグメンテーションマップに依存する。
提案モデルでは,最先端検出精度と顕著なローカライゼーション性能を実現する。
論文 参考訳(メタデータ) (2021-07-13T02:59:31Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - I-Nema: A Biological Image Dataset for Nematode Recognition [3.1918817988202606]
線虫は地球上で最も豊富な中生代グループの一つであり、多様な生態的ニッチを占有している。
ネマトドの正確な認識または識別は、害虫駆除、土壌生態学、生物地理学、生息地の保全、気候変動に対する大きな重要性を有する。
コンピュータビジョンと画像処理は、線虫の種認識にいくつかの成功をおさめたが、依然として大きな需要がある。
論文 参考訳(メタデータ) (2021-03-15T12:29:37Z) - Unifying data for fine-grained visual species classification [15.14767769034929]
465種にまたがる2.9M画像に基づいて訓練した,初期の深部畳み込みニューラルネットワークモデルを提案する。
長期的な目標は、科学者が種数と人口の健康状態のほぼリアルタイムでの分析から、保護的なレコメンデーションを行うことである。
論文 参考訳(メタデータ) (2020-09-24T01:04:18Z) - Visual Identification of Individual Holstein-Friesian Cattle via Deep
Metric Learning [8.784100314325395]
ホルシュタイン・フリーズ産の牛は、チューリングの反応拡散系から生じたものと類似した、個々の特性の白黒のコートパターンを視覚的に示す。
この研究は、畳み込みニューラルネットワークとディープメトリック学習技術を介して、個々のホルシュタイン・フリース人の視覚的検出と生体認証を自動化するために、これらの自然なマーキングを利用する。
論文 参考訳(メタデータ) (2020-06-16T14:41:55Z) - Face Identity Disentanglement via Latent Space Mapping [47.27253184341152]
本稿では,データ表現を最小限に抑えながら,不整合な方法で表現する方法を学習する手法を提案する。
我々の重要な洞察は、StyleGANのような先行訓練済みの未条件画像生成装置を利用することで、アンタングル化と合成のプロセスを切り離すことである。
提案手法は,既存の手法を超越して,他の顔属性と同一性を切り離すことに成功した。
論文 参考訳(メタデータ) (2020-05-15T18:24:49Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
我々は,異なるパターンの個体の自動検出と認識のための枠組みを開発する。
我々は最近提案したFaster-RCNNオブジェクト検出フレームワークを用いて画像中の動物を効率的に検出する。
我々は,シマウマおよびジャガー画像の認識システムを評価し,他のパターンの種への一般化を示す。
論文 参考訳(メタデータ) (2020-05-06T15:29:21Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。