Scalable Multi-Objective Optimization for Robust Traffic Signal Control in Uncertain Environments
- URL: http://arxiv.org/abs/2409.13388v1
- Date: Fri, 20 Sep 2024 10:42:16 GMT
- Title: Scalable Multi-Objective Optimization for Robust Traffic Signal Control in Uncertain Environments
- Authors: Weian Guo, Wuzhao Li, Zhiou Zhang, Lun Zhang, Li Li, Dongyang Li,
- Abstract summary: This paper presents a scalable multi-objective optimization approach for robust traffic signal control in dynamic and uncertain urban environments.
We propose an algorithm named Adaptive Hybrid Multi-Objective Optimization Algorithm (AHMOA), which addresses the uncertainties of city traffic.
Simulations are conducted in different cities including Manhattan, Paris, Sao Paulo, and Istanbul.
- Score: 7.504173535502228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent traffic signal control is essential to modern urban management, with important impacts on economic efficiency, environmental sustainability, and quality of daily life. However, in current decades, it continues to pose significant challenges in managing large-scale traffic networks, coordinating intersections, and ensuring robustness under uncertain traffic conditions. This paper presents a scalable multi-objective optimization approach for robust traffic signal control in dynamic and uncertain urban environments. A multi-objective optimization model is proposed in this paper, which incorporates stochastic variables and probabilistic traffic patterns to capture traffic flow dynamics and uncertainty. We propose an algorithm named Adaptive Hybrid Multi-Objective Optimization Algorithm (AHMOA), which addresses the uncertainties of city traffic, including network-wide signal coordination, fluctuating patterns, and environmental impacts. AHMOA simultaneously optimizes multiple objectives, such as average delay, network stability, and system robustness, while adapting to unpredictable changes in traffic. The algorithm combines evolutionary strategies with an adaptive mechanism to balance exploration and exploitation, and incorporates a memory-based evaluation mechanism to leverage historical traffic data. Simulations are conducted in different cities including Manhattan, Paris, Sao Paulo, and Istanbul. The experimental results demonstrate that AHMOA consistently outperforms several state-of-the-art algorithms and the algorithm is competent to provide scalable, robust Pareto optimal solutions for managing complex traffic systems under uncertain environments.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems [11.655502119510134]
Complex urban road networks with high vehicle occupancy frequently face severe traffic congestion.
Most current traffic light management systems rely on human-crafted decisions, which may not adapt well to diverse traffic patterns.
We introduce a novel and practical framework to formulate the optimization of such design components using an offline meta black-box optimization.
arXiv Detail & Related papers (2024-08-14T06:57:58Z) - Traffic signal optimization in large-scale urban road networks: an adaptive-predictive controller using Ising models [4.408586742026574]
We propose a control method called AMPIC that guarantees both scalability and optimality.
The proposed method employs model predictive control to solve an optimal control problem at each control interval with explicit consideration of a predictive model of vehicle flow.
Results show that AMPIC enables faster vehicle cruising speed with less waiting time than that achieved by classical control methods.
arXiv Detail & Related papers (2024-06-06T02:20:34Z) - LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
This work introduces an innovative approach that integrates Large Language Models into traffic signal control systems.
A hybrid framework that augments LLMs with a suite of perception and decision-making tools is proposed.
The findings from our simulations attest to the system's adeptness in adjusting to a multiplicity of traffic environments.
arXiv Detail & Related papers (2024-03-13T08:41:55Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.
We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.
We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
This paper develops a learning-based algorithm to deal with complex intersections with mixed traffic flows.
We first consider different velocity models for green and red lights in the training process and use a finite state machine to handle different modes of light transformation.
Then we design different types of distance constraints for vehicles, traffic lights, pedestrians, bicycles respectively and formulize the constrained optimal control problems.
arXiv Detail & Related papers (2021-08-30T07:55:32Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.