論文の概要: An Adaptive Importance Sampling for Locally Stable Point Processes
- arxiv url: http://arxiv.org/abs/2408.07372v1
- Date: Wed, 14 Aug 2024 08:38:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:04:00.426661
- Title: An Adaptive Importance Sampling for Locally Stable Point Processes
- Title(参考訳): 局所安定点プロセスにおける適応的重要度サンプリング
- Authors: Hee-Geon Kang, Sunggon Kim,
- Abstract要約: 境界領域における局所安定点過程の統計値の期待値を求めるための適応的な重要度サンプリング手法を提案する。
提案した推定器は、ほぼ確実に目標値に収束し、その正規性を証明する。
提案手法の性能をマルコフ連鎖モンテカルロシミュレーションと完全サンプリングと比較した。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The problem of finding the expected value of a statistic of a locally stable point process in a bounded region is addressed. We propose an adaptive importance sampling for solving the problem. In our proposal, we restrict the importance point process to the family of homogeneous Poisson point processes, which enables us to generate quickly independent samples of the importance point process. The optimal intensity of the importance point process is found by applying the cross-entropy minimization method. In the proposed scheme, the expected value of the function and the optimal intensity are iteratively estimated in an adaptive manner. We show that the proposed estimator converges to the target value almost surely, and prove the asymptotic normality of it. We explain how to apply the proposed scheme to the estimation of the intensity of a stationary pairwise interaction point process. The performance of the proposed scheme is compared numerically with the Markov chain Monte Carlo simulation and the perfect sampling.
- Abstract(参考訳): 境界領域における局所安定点過程の統計量の期待値を求める問題に対処する。
この問題を解決するために,適応的な重要度サンプリングを提案する。
本提案では,同種ポアソン点過程の族に重要点過程を限定し,重要点過程の素早い独立サンプルを生成する。
重要点過程の最適強度は、クロスエントロピー最小化法を適用することにより得られる。
提案手法では,関数の期待値と最適強度を適応的に反復的に推定する。
提案した推定器は,ほぼ確実に目標値に収束し,その漸近正規性を証明する。
定常対相互作用点過程の強度推定に提案手法を適用する方法について説明する。
提案手法の性能をマルコフ連鎖モンテカルロシミュレーションと完全サンプリングと比較した。
関連論文リスト
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
本稿では,1次と2次の両方の定常点を見つけるための信頼逐次準計画法を提案する。
本手法は, 1次定常点に収束するため, 対象対象の近似を最小化して定義された各イテレーションの勾配ステップを計算する。
2階定常点に収束するため,本手法は負曲率を減少するヘッセン行列を探索する固有ステップも計算する。
論文 参考訳(メタデータ) (2024-09-24T04:39:47Z) - An Asymptotically Optimal Coordinate Descent Algorithm for Learning Bayesian Networks from Gaussian Models [6.54203362045253]
線形ガウス構造方程式モデルに基づいて連続観測データからネットワークを学習する問題について検討する。
本稿では,$ell$penalized max chanceの最適目標値に収束する新しい座標降下アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-21T20:18:03Z) - Entropic Matching for Expectation Propagation of Markov Jump Processes [38.60042579423602]
本稿では,エントロピックマッチングフレームワークに基づく新たなトラクタブル推論手法を提案する。
簡単な近似分布の族に対して閉形式の結果を提供することにより,本手法の有効性を実証する。
我々は、近似予測法を用いて、基礎となるパラメータの点推定のための式を導出する。
論文 参考訳(メタデータ) (2023-09-27T12:07:21Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
二重確率点過程は、ランダム強度関数の実現を前提とした不均一過程として空間領域上の事象の発生をモデル化する。
既存の二重確率空間モデルの実装は、計算的に要求され、しばしば理論的な保証が制限され、または制限的な仮定に依存している。
論文 参考訳(メタデータ) (2023-06-11T19:48:39Z) - MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY
Estimation [4.014524824655106]
MESSY推定は最大エントロピーに基づくグラディエントおよびシンボリックデンシット推定法である。
本研究では,未知分布関数のサンプルを推定記号表現に接続する勾配に基づくドリフト拡散過程を構築する。
基本関数の記号探索を追加することで, 推定精度を合理的な計算コストで向上することがわかった。
論文 参考訳(メタデータ) (2023-06-07T03:28:47Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
割引平均推定問題に対して最小値の最小値を求める。
マルコフ過程の割引されたカーネルから直接サンプリングすることで平均を推定すると、説得力のある統計的性質が得られることを示す。
論文 参考訳(メタデータ) (2023-04-11T09:13:17Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Adaptive Importance Sampling meets Mirror Descent: a Bias-variance
tradeoff [7.538482310185135]
適応的な重要度サンプリングの大きな欠点は、重みの大きなばらつきである。
本稿では,一定のパワーで重み付けを行うことを基本原理とする正規化戦略について検討する。
論文 参考訳(メタデータ) (2021-10-29T07:45:24Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
論文 参考訳(メタデータ) (2021-06-30T17:51:36Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。