Real-world validation of safe reinforcement learning, model predictive control and decision tree-based home energy management systems
- URL: http://arxiv.org/abs/2408.07435v2
- Date: Mon, 25 Nov 2024 09:45:15 GMT
- Title: Real-world validation of safe reinforcement learning, model predictive control and decision tree-based home energy management systems
- Authors: Julian Ruddick, Glenn Ceusters, Gilles Van Kriekinge, Evgenii Genov, Cedric De Cauwer, Thierry Coosemans, Maarten Messagie,
- Abstract summary: This paper presents the real-world validation of machine learning based energy management approaches.
The experiments were conducted on the electrical installation of 4 reproductions of residential houses.
- Score: 0.8480931990442769
- License:
- Abstract: Recent advancements in machine learning based energy management approaches, specifically reinforcement learning with a safety layer (OptLayerPolicy) and a metaheuristic algorithm generating a decision tree control policy (TreeC), have shown promise. However, their effectiveness has only been demonstrated in computer simulations. This paper presents the real-world validation of these methods, comparing against model predictive control and simple rule-based control benchmark. The experiments were conducted on the electrical installation of 4 reproductions of residential houses, which all have their own battery, photovoltaic and dynamic load system emulating a non-controllable electrical load and a controllable electric vehicle charger. The results show that the simple rules, TreeC, and model predictive control-based methods achieved similar costs, with a difference of only 0.6%. The reinforcement learning based method, still in its training phase, obtained a cost 25.5\% higher to the other methods. Additional simulations show that the costs can be further reduced by using a more representative training dataset for TreeC and addressing errors in the model predictive control implementation caused by its reliance on accurate data from various sources. The OptLayerPolicy safety layer allows safe online training of a reinforcement learning agent in the real-world, given an accurate constraint function formulation. The proposed safety layer method remains error-prone, nonetheless, it is found beneficial for all investigated methods. The TreeC method, which does require building a realistic simulation for training, exhibits the safest operational performance, exceeding the grid limit by only 27.1 Wh compared to 593.9 Wh for reinforcement learning.
Related papers
- Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Enabling Efficient, Reliable Real-World Reinforcement Learning with
Approximate Physics-Based Models [10.472792899267365]
We focus on developing efficient and reliable policy optimization strategies for robot learning with real-world data.
In this paper we introduce a novel policy gradient-based policy optimization framework.
We show that our approach can learn precise control strategies reliably and with only minutes of real-world data.
arXiv Detail & Related papers (2023-07-16T22:36:36Z) - ConBaT: Control Barrier Transformer for Safe Policy Learning [26.023275758215423]
Control Barrier Transformer (ConBaT) is an approach that learns safe behaviors from demonstrations in a self-supervised fashion.
During deployment, we employ a lightweight online optimization to find actions that ensure future states lie within the learned safe set.
arXiv Detail & Related papers (2023-03-07T20:04:28Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - Efficient Learning of Voltage Control Strategies via Model-based Deep
Reinforcement Learning [9.936452412191326]
This article proposes a model-based deep reinforcement learning (DRL) method to design emergency control strategies for short-term voltage stability problems in power systems.
Recent advances show promising results in model-free DRL-based methods for power systems, but model-free methods suffer from poor sample efficiency and training time.
We propose a novel model-based-DRL framework where a deep neural network (DNN)-based dynamic surrogate model is utilized with the policy learning framework.
arXiv Detail & Related papers (2022-12-06T02:50:53Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRL is a framework for solving sequential decision-making problems.
It exploits the combination of reinforcement learning and latent variable generative models.
We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training.
arXiv Detail & Related papers (2022-04-18T22:02:32Z) - Physics-informed Evolutionary Strategy based Control for Mitigating
Delayed Voltage Recovery [14.44961822756759]
We propose a novel data-driven, real-time power system voltage control method based on the physics-informed guided meta evolutionary strategy (ES)
The main objective is to quickly provide an adaptive control strategy to mitigate the fault-induced delayed voltage recovery (FIDVR) problem.
arXiv Detail & Related papers (2021-11-29T07:12:40Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
Offline Reinforcement Learning promises to learn effective policies from previously-collected, static datasets without the need for exploration.
Existing Q-learning and actor-critic based off-policy RL algorithms fail when bootstrapping from out-of-distribution (OOD) actions or states.
We propose Uncertainty Weighted Actor-Critic (UWAC), an algorithm that detects OOD state-action pairs and down-weights their contribution in the training objectives accordingly.
arXiv Detail & Related papers (2021-05-17T20:16:46Z) - Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust [0.2770822269241973]
Navigation problems under unknown varying conditions are among the most important and well-studied problems in the control field.
Recent model-free adaptive control methods aim at removing this dependency by learning the physical characteristics of the plant directly from sensor feedback.
We propose a conceptually simple learning-based approach composed of a full state feedback controller, tuned robustly by a deep reinforcement learning framework.
arXiv Detail & Related papers (2021-01-29T10:13:56Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.