論文の概要: Multi-task Heterogeneous Graph Learning on Electronic Health Records
- arxiv url: http://arxiv.org/abs/2408.07569v1
- Date: Wed, 14 Aug 2024 14:06:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:03:36.502473
- Title: Multi-task Heterogeneous Graph Learning on Electronic Health Records
- Title(参考訳): 電子カルテを用いたマルチタスク不均一グラフ学習
- Authors: Tsai Hor Chan, Guosheng Yin, Kyongtae Bae, Lequan Yu,
- Abstract要約: EHRモデリングのための新しいフレームワーク MulT-EHR (Multi-Task EHR) を提案する。
そこで本研究では,因果推論フレームワークをベースとしたデノナイジングモジュールを導入し,重度のコンバウンディング効果の調整を行う。
マルチタスク学習モジュールを設計し、タスク間知識を活用してトレーニングプロセスの正規化を行う。
- 参考スコア(独自算出の注目度): 22.218522445858344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning electronic health records (EHRs) has received emerging attention because of its capability to facilitate accurate medical diagnosis. Since the EHRs contain enriched information specifying complex interactions between entities, modeling EHRs with graphs is shown to be effective in practice. The EHRs, however, present a great degree of heterogeneity, sparsity, and complexity, which hamper the performance of most of the models applied to them. Moreover, existing approaches modeling EHRs often focus on learning the representations for a single task, overlooking the multi-task nature of EHR analysis problems and resulting in limited generalizability across different tasks. In view of these limitations, we propose a novel framework for EHR modeling, namely MulT-EHR (Multi-Task EHR), which leverages a heterogeneous graph to mine the complex relations and model the heterogeneity in the EHRs. To mitigate the large degree of noise, we introduce a denoising module based on the causal inference framework to adjust for severe confounding effects and reduce noise in the EHR data. Additionally, since our model adopts a single graph neural network for simultaneous multi-task prediction, we design a multi-task learning module to leverage the inter-task knowledge to regularize the training process. Extensive empirical studies on MIMIC-III and MIMIC-IV datasets validate that the proposed method consistently outperforms the state-of-the-art designs in four popular EHR analysis tasks -- drug recommendation, and predictions of the length of stay, mortality, and readmission. Thorough ablation studies demonstrate the robustness of our method upon variations to key components and hyperparameters.
- Abstract(参考訳): 電子健康記録(EHR)の学習は、正確な診断を容易にする能力から注目されている。
EHRにはエンティティ間の複雑な相互作用を示す豊富な情報が含まれているため、グラフを用いたEHRのモデリングは実際は有効であることが示されている。
しかし、EHRは不均一性、疎性、複雑さの度合いが高く、それらに適用されたほとんどのモデルの性能を損なう。
さらに、既存の EHR モデリング手法は、1つのタスクの表現を学習することに集中し、EHR 分析問題のマルチタスク性を見越して、異なるタスクにまたがる限定的な一般化性をもたらす。
これらの制約を考慮し、複雑な関係をマイニングし、EHRの不均一性をモデル化するために不均一グラフを利用するMulT-EHR(Multi-Task EHR)という新しいEHRモデリングフレームワークを提案する。
ノイズの低減のために,因果推論フレームワークに基づくデノナイジングモジュールを導入し,重度のコンバウンディング効果を調整し,EHRデータにおけるノイズを低減する。
さらに,本モデルでは,マルチタスクの同時予測に単一グラフニューラルネットワークを採用しているため,マルチタスク学習モジュールを設計して,タスク間知識を活用してトレーニングプロセスの正規化を行う。
MIMIC-IIIとMIMIC-IVのデータセットに関する大規模な実験研究により、提案手法は4つの一般的なEHR分析タスク(薬物の推奨、滞在期間、死亡率、寛解期間の予測)において、常に最先端の設計よりも優れていることが検証された。
徹底的なアブレーション研究は,鍵成分やハイパーパラメータの変動による手法の堅牢性を示すものである。
関連論文リスト
- Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGEは、マルチモーダルEHR予測モデリングの強化を目的とした、検索拡張生成駆動フレームワークである。
提案手法は,大規模言語モデルにより時系列データと臨床メモの両方からエンティティを抽出する。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - Contrastive Learning on Multimodal Analysis of Electronic Health Records [15.392566551086782]
本稿では,新しい特徴埋め込み生成モデルを提案し,マルチモーダルEHR特徴表現を得るためのマルチモーダルコントラスト損失を設計する。
本理論は, 単モーダル学習と比較して, 多モーダル学習の有効性を実証するものである。
この接続は、マルチモーダルEHR特徴表現学習に適したプライバシー保護アルゴリズムの道を開く。
論文 参考訳(メタデータ) (2024-03-22T03:01:42Z) - Automated Multi-Task Learning for Joint Disease Prediction on Electronic Health Records [4.159498069487535]
本稿では,タスクグループとアーキテクチャの最適構成を同時に検索できるAutoDPという自動手法を提案する。
ハンドクラフトと自動化された最先端の手法の両方に対して大幅な性能向上を実現し、同時に検索コストを同時に維持する。
論文 参考訳(メタデータ) (2024-03-06T22:32:48Z) - Black-box Adversarial Attacks against Dense Retrieval Models: A
Multi-view Contrastive Learning Method [115.29382166356478]
本稿では,敵探索攻撃(AREA)タスクを紹介する。
DRモデルは、DRモデルによって取得された候補文書の初期セットの外側にあるターゲット文書を取得するように、DRモデルを騙すことを目的としている。
NRM攻撃で報告された有望な結果は、DRモデルに一般化されない。
マルチビュー表現空間における対照的な学習問題として,DRモデルに対する攻撃を形式化する。
論文 参考訳(メタデータ) (2023-08-19T00:24:59Z) - Modeling electronic health record data using a knowledge-graph-embedded
topic model [6.170782354287972]
エンド・ツー・エンドの知識グラフに基づくマルチモーダル組込みトピックモデルであるKG-ETMを提案する。
KG-ETMは、医療知識グラフから埋め込みを学習することで、HRデータから潜伏病トピックを抽出する。
また,本モデルでは,患者層化と薬剤推奨のための解釈可能かつ正確な患者表現も発見できる。
論文 参考訳(メタデータ) (2022-06-03T07:58:17Z) - Graph-Text Multi-Modal Pre-training for Medical Representation Learning [7.403725826586844]
本稿では,構造化EHRデータとテキストEHRデータのマルチモーダル表現学習のための事前学習モデルであるMedGTXを提案する。
我々は,オープンソースのEHRデータであるMIMIC-III上での4つのプロキシタスクを通じて,モデルを事前訓練する。
その結果, EHR から得られた構造化情報と非構造化情報の両方の結合表現のための事前学習の有効性が一貫して示された。
論文 参考訳(メタデータ) (2022-03-18T14:45:42Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。