Quantum enhanced Markov chains require fine-tuned quenches
- URL: http://arxiv.org/abs/2408.07881v1
- Date: Thu, 15 Aug 2024 01:40:07 GMT
- Title: Quantum enhanced Markov chains require fine-tuned quenches
- Authors: Alev Orfi, Dries Sels,
- Abstract summary: Quantum-enhanced Markov chain Monte Carlo is proposed as a method for robust quantum speedup on imperfect quantum devices.
We identify competing factors that limit the algorithm's performance.
Specifically, we show that in the long-time limit, the gap of the Markov chain is bounded by the inverse participation ratio of the classical states in the eigenstate basis.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum-enhanced Markov chain Monte Carlo, an algorithm in which configurations are proposed through a measured quantum quench and accepted or rejected by a classical algorithm, has been proposed as a possible method for robust quantum speedup on imperfect quantum devices. While this procedure is resilient to noise and control imperfections, the potential for quantum advantage is unclear. By upper-bounding the gap of the Markov chain, we identify competing factors that limit the algorithm's performance. One needs the quantum dynamics to efficiently delocalize the system over a range of classical states, however, it is also detrimental to introduce too much entropy through the quench. Specifically, we show that in the long-time limit, the gap of the Markov chain is bounded by the inverse participation ratio of the classical states in the eigenstate basis, showing there is no advantage when quenching to an ergodic system. For the paradigmatic Sherrington-Kirkpatrick and 3-spin model, we identify the regime of optimal spectral gap scaling and link it to the system's eigenstate properties.
Related papers
- Quantum Dissipative Search via Lindbladians [0.0]
We analyze a purely dissipative quantum random walk on an unstructured classical search space.
We show that certain jump operators make the quantum process replicate a classical one, while others yield differences between open quantum (OQRW) and classical random walks.
We also clarify a previously observed quadratic speedup, demonstrating that OQRWs are no more efficient than classical search.
arXiv Detail & Related papers (2024-07-16T14:39:18Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Bounding speedup of quantum-enhanced Markov chain Monte Carlo [0.0]
We show that there is no speedup over classical sampling on a worst-case unstructured sampling problem.
We present an upper bound to the Markov gap that rules out a speedup for any unital quantum proposal.
arXiv Detail & Related papers (2024-03-05T16:20:01Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Mixed state entanglement by efficient separation of quantum from
classical correlations [0.0]
Entanglement is the key resource for quantum technologies and is at the root of exciting many-body phenomena.
Here, we devise an entanglement measure for such realistic open systems by filtering the entanglement spectrum of the mixed state.
We showcase our scheme for spinless particles moving on a chain in presence of dephasing.
arXiv Detail & Related papers (2022-02-15T14:12:16Z) - Quantifying fermionic nonlinearity of quantum circuits [0.5658123802733283]
We quantify the classical simulatability of quantum circuits designed for simulating fermionic Hamiltonians.
We find that, depending on the error probability and atomic spacing, there are regions where the fermionic nonlinearity becomes very small or unity.
arXiv Detail & Related papers (2021-11-29T15:31:43Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Preserving quantum correlations and coherence with non-Markovianity [50.591267188664666]
We demonstrate the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems.
For covariant qubit evolutions, we show that non-Markovianity can be used to preserve quantum coherence at all times.
arXiv Detail & Related papers (2021-06-25T11:52:51Z) - Variational Quantum Algorithms for Steady States of Open Quantum Systems [2.740982822457262]
We propose a variational quantum algorithm to find the steady state of open quantum systems.
The fidelity between the optimal mixed state and the true steady state is over 99%.
This algorithm is derived from the natural idea of expressing mixed states with purification.
arXiv Detail & Related papers (2020-01-08T14:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.