論文の概要: The doctor will polygraph you now: ethical concerns with AI for fact-checking patients
- arxiv url: http://arxiv.org/abs/2408.07896v2
- Date: Mon, 11 Nov 2024 20:31:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:18:02.175540
- Title: The doctor will polygraph you now: ethical concerns with AI for fact-checking patients
- Title(参考訳): 医師が患者をポリグラフ化する: ファクトチェックの患者に対するAIの倫理的懸念
- Authors: James Anibal, Jasmine Gunkel, Shaheen Awan, Hannah Huth, Hang Nguyen, Tram Le, Jean-Christophe Bélisle-Pipon, Micah Boyer, Lindsey Hazen, Bridge2AI Voice Consortium, Yael Bensoussan, David Clifton, Bradford Wood,
- Abstract要約: 社会行動予測のための人工知能(AI)手法が提案されている。
これにより、患者のデータに対する敬意、プライバシ、コントロールに関する新たな倫理的懸念が生まれます。
- 参考スコア(独自算出の注目度): 0.23248585800296404
- License:
- Abstract: Artificial intelligence (AI) methods have been proposed for the prediction of social behaviors which could be reasonably understood from patient-reported information. This raises novel ethical concerns about respect, privacy, and control over patient data. Ethical concerns surrounding clinical AI systems for social behavior verification can be divided into two main categories: (1) the potential for inaccuracies/biases within such systems, and (2) the impact on trust in patient-provider relationships with the introduction of automated AI systems for fact-checking, particularly in cases where the data/models may contradict the patient. Additionally, this report simulated the misuse of a verification system using patient voice samples and identified a potential LLM bias against patient-reported information in favor of multi-dimensional data and the outputs of other AI methods (i.e., AI self-trust). Finally, recommendations were presented for mitigating the risk that AI verification methods will cause harm to patients or undermine the purpose of the healthcare system.
- Abstract(参考訳): 患者が報告した情報から合理的に理解できる社会行動を予測するために人工知能(AI)手法が提案されている。
これにより、患者のデータに対する敬意、プライバシ、コントロールに関する新たな倫理的懸念が生まれます。
社会的行動検証のための臨床AIシステムを取り巻く倫理的懸念は、(1)システム内の不正確/バイアスの可能性、(2)ファクトチェックのための自動AIシステムの導入による患者-研究者関係への信頼への影響、特にデータ/モデルが患者に矛盾する可能性がある場合の2つのカテゴリに分けられる。
さらに,患者音声サンプルを用いた検証システムの誤用をシミュレートし,多次元データと他のAI手法(AI自己信頼)の出力を優先して,患者が報告した情報に対する潜在的LCMバイアスを特定した。
最後に、AI検証手法が患者を傷つけたり、医療システムの目的を損なうリスクを軽減するための勧告が提示された。
関連論文リスト
- Which Client is Reliable?: A Reliable and Personalized Prompt-based Federated Learning for Medical Image Question Answering [51.26412822853409]
本稿では,医学的視覚的質問応答(VQA)モデルのための,パーソナライズド・フェデレーションド・ラーニング(pFL)手法を提案する。
提案手法では,学習可能なプロンプトをTransformerアーキテクチャに導入し,膨大な計算コストを伴わずに,多様な医療データセット上で効率的にトレーニングする。
論文 参考訳(メタデータ) (2024-10-23T00:31:17Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
本論文は,医療関連テキストにおける感情評価における人工知能の利用に関する方法論的考察である。
我々は、感情分析を強化し、感情を分類し、患者の結果を予測するためにAIを利用する多くの研究を精査する。
AIの倫理的応用を保証すること、患者の機密性を保護すること、アルゴリズムの手続きにおける潜在的なバイアスに対処することを含む、継続的な課題がある。
論文 参考訳(メタデータ) (2024-03-14T15:58:13Z) - Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Clinician-AI-Collaboration Framework [13.215318138576713]
論文は、解釈可能なAIプロセス、方法、応用、および医療における実装の課題についてレビューする。
医療における堅牢な解釈可能性アプローチの重要な役割を包括的に理解することを目的としている。
論文 参考訳(メタデータ) (2023-11-18T12:29:18Z) - Functional requirements to mitigate the Risk of Harm to Patients from
Artificial Intelligence in Healthcare [0.0]
本研究は、医療目的に関連するリスクを軽減するために、AIシステムが実装可能な14の機能要件を提案する。
ここでの私たちの意図は、将来のEU規制フレームワークに準拠した患者に、継続的なパフォーマンスとAIシステムの使用を保証するために、技術的なソリューションの特定のハイレベルな仕様を提供することです。
論文 参考訳(メタデータ) (2023-09-19T08:37:22Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Leveraging Clinical Context for User-Centered Explainability: A Diabetes
Use Case [4.520155732176645]
慢性腎臓病(CKD)のリスクを評価する2型糖尿病(T2DM)症例における概念実証(POC)を実装した。
POCには、CKDのリスク予測モデル、予測のポストホック説明器、その他の自然言語モジュールが含まれています。
我々のPOCアプローチは、複数の知識ソースと臨床シナリオをカバーし、データと予測をPCPに説明するために知識をブレンドし、医療専門家から熱心に反応した。
論文 参考訳(メタデータ) (2021-07-06T02:44:40Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。