論文の概要: Towards Practical Human Motion Prediction with LiDAR Point Clouds
- arxiv url: http://arxiv.org/abs/2408.08202v2
- Date: Tue, 01 Oct 2024 09:55:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:32:32.746056
- Title: Towards Practical Human Motion Prediction with LiDAR Point Clouds
- Title(参考訳): LiDAR点雲を用いた人体動作予測の実用化に向けて
- Authors: Xiao Han, Yiming Ren, Yichen Yao, Yujing Sun, Yuexin Ma,
- Abstract要約: 我々は,最初のシングルLiDARに基づく3次元人体動作予測手法であるtextitLiDAR-HMPを提案する。
LiDAR-HMPは、入力として生のLiDARポイントクラウドを受け取り、将来の3D人間のポーズを直接予測する。
提案手法は,2つの公開ベンチマーク上での最先端性能を実現し,実世界の展開において顕著な堅牢性と有効性を示す。
- 参考スコア(独自算出の注目度): 15.715130864327792
- License:
- Abstract: Human motion prediction is crucial for human-centric multimedia understanding and interacting. Current methods typically rely on ground truth human poses as observed input, which is not practical for real-world scenarios where only raw visual sensor data is available. To implement these methods in practice, a pre-phrase of pose estimation is essential. However, such two-stage approaches often lead to performance degradation due to the accumulation of errors. Moreover, reducing raw visual data to sparse keypoint representations significantly diminishes the density of information, resulting in the loss of fine-grained features. In this paper, we propose \textit{LiDAR-HMP}, the first single-LiDAR-based 3D human motion prediction approach, which receives the raw LiDAR point cloud as input and forecasts future 3D human poses directly. Building upon our novel structure-aware body feature descriptor, LiDAR-HMP adaptively maps the observed motion manifold to future poses and effectively models the spatial-temporal correlations of human motions for further refinement of prediction results. Extensive experiments show that our method achieves state-of-the-art performance on two public benchmarks and demonstrates remarkable robustness and efficacy in real-world deployments.
- Abstract(参考訳): 人間の動き予測は、人間中心のマルチメディア理解と対話に不可欠である。
現行の手法は一般に、人間のポーズを観察された入力に頼っているが、これは生の視覚センサーデータしか利用できない現実のシナリオでは実用的ではない。
これらの手法を実際に実装するには、ポーズ推定のプレフレーズが不可欠である。
しかし、このような2段階のアプローチは、しばしばエラーの蓄積による性能低下につながる。
さらに、生の視覚データを疎いキーポイント表現に還元すると、情報の密度が著しく低下し、きめ細かい特徴が失われる。
本稿では,最初の単一LiDARに基づく3次元人体動作予測手法である \textit{LiDAR-HMP} を提案する。
構造を意識した新しい身体特徴記述子をベースとして,LiDAR-HMPは観測された動き多様体を将来のポーズに適応的にマッピングし,人間の動きの時空間相関を効果的にモデル化し,予測結果をさらに洗練する。
広汎な実験により,本手法は2つの公開ベンチマーク上での最先端性能を実現し,実世界の展開において顕著な堅牢性と有効性を示す。
関連論文リスト
- HOIMotion: Forecasting Human Motion During Human-Object Interactions Using Egocentric 3D Object Bounding Boxes [10.237077867790612]
本稿では,人間と物体の相互作用における人間の動き予測の新しい手法であるHOIMotionを提案する。
提案手法は,過去の身体のポーズやエゴセントリックな3Dオブジェクト境界ボックスに関する情報を統合する。
HOIMotionは、最先端の手法よりも大きなマージンで一貫して優れていることを示す。
論文 参考訳(メタデータ) (2024-07-02T19:58:35Z) - Context-based Interpretable Spatio-Temporal Graph Convolutional Network
for Human Motion Forecasting [0.0]
本稿では,効率的な3次元ポーズ予測モデルとしてコンテキスト解釈型時空間グラフネットワーク(IST-GCN)を提案する。
提案アーキテクチャでは,ポーズシーケンスから意味のある情報を抽出し,入力モデルにアグリゲーションとアクセラレーションを集約し,最終的に出力変位を予測する。
論文 参考訳(メタデータ) (2024-02-21T17:51:30Z) - Motion-Scenario Decoupling for Rat-Aware Video Position Prediction:
Strategy and Benchmark [49.58762201363483]
本研究では,個人や環境の影響要因を考慮し,生物ロボットの動き予測データセットであるRatPoseを紹介する。
本稿では,シナリオ指向とモーション指向を効果的に分離するDual-stream Motion-Scenario Decouplingフレームワークを提案する。
難易度が異なるタスクに対して,提案したtextitDMSD フレームワークの大幅な性能向上を示す。
論文 参考訳(メタデータ) (2023-05-17T14:14:31Z) - A generic diffusion-based approach for 3D human pose prediction in the
wild [68.00961210467479]
3D人間のポーズ予測、すなわち、過去の観察されたポーズのシーケンスが与えられた後の人間の3Dポーズのシーケンスを予測することは、困難な時間課題である。
本稿では,不完全な要素(予測や観測に関係しない)をノイズとして扱える統一的な定式化法を提案し,それらを認知し,妥当なポーズを予測する条件拡散モデルを提案する。
本研究は,4つの標準データセットについて検討し,現状よりも大幅に改善された。
論文 参考訳(メタデータ) (2022-10-11T17:59:54Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - 3D Skeleton-based Human Motion Prediction with Manifold-Aware GAN [3.1313293632309827]
本研究では,3次元骨格を用いた人体動作予測の新しい手法を提案する。
我々は,人間の運動の時間的および空間的依存を捉える,多様体を意識したワッサーシュタイン生成逆数モデルを構築した。
CMU MoCapとHuman 3.6Mデータセットで実験が行われた。
論文 参考訳(メタデータ) (2022-03-01T20:49:13Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
歴史的ポーズシーケンスから人間の動きを予測することは、機械が人間と知的な相互作用を成功させるために不可欠である。
本研究では,様々なポーズ表現に関する詳細な研究を行い,その動作予測課題に対する効果に着目した。
AHMR(Attentive Hierarchical Motion Recurrent Network)と呼ばれる新しいRNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-30T10:45:22Z) - Learning to Predict Diverse Human Motions from a Single Image via
Mixture Density Networks [9.06677862854201]
本研究では,混合密度ネットワーク(MDN)モデルを用いて,単一画像から将来の人間の動きを予測する新しい手法を提案する。
MDNのマルチモーダルな性質は、既存のディープヒューマンモーション予測アプローチとは対照的に、様々な将来のモーション仮説の生成を可能にしている。
訓練されたモデルでは、入力として画像を直接取り、与えられた条件を満たす複数の可視運動を生成する。
論文 参考訳(メタデータ) (2021-09-13T08:49:33Z) - Human Motion Prediction Using Manifold-Aware Wasserstein GAN [4.771549505875783]
我々は,人間の運動の時間的および空間的依存性を捉える多様体認識ワッサースタイン生成逆モデルを構築した。
我々のアプローチは、CMU MoCapとHuman 3.6Mデータセットの最先端よりも優れています。
論文 参考訳(メタデータ) (2021-05-18T17:56:10Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
リカレントニューラルネットワークとフィードフォワードディープネットワークという2つの一般的な手法は、粗い動きの傾向を予測することができる。
本稿では,新たな逆誤差増大を伴う簡易かつ効果的な粗大きめ機構に従えば,ARNet(Adversarial Refinement Network)を提案する。
論文 参考訳(メタデータ) (2020-11-23T05:42:20Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
大規模インスタディオデータセットの監視を用いて開発された人間のポーズ推定モデルの一般化可能性については疑問が残る。
本稿では,2対あるいは2対の弱い監督者によって抑制されない,新しいキネマティック構造保存型非教師付き3次元ポーズ推定フレームワークを提案する。
提案モデルでは,前方運動学,カメラ投影,空間マップ変換という3つの連続的な微分可能変換を用いる。
論文 参考訳(メタデータ) (2020-06-24T23:56:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。