論文の概要: Classification of High-dimensional Time Series in Spectral Domain using Explainable Features
- arxiv url: http://arxiv.org/abs/2408.08388v1
- Date: Thu, 15 Aug 2024 19:10:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 17:20:01.721170
- Title: Classification of High-dimensional Time Series in Spectral Domain using Explainable Features
- Title(参考訳): 説明可能な特徴を用いたスペクトル領域における高次元時系列の分類
- Authors: Sarbojit Roy, Malik Shahid Sultan, Hernando Ombao,
- Abstract要約: 本稿では,高次元定常時系列を分類するためのモデルに基づくアプローチを提案する。
我々のアプローチはモデルパラメータの解釈可能性を強調し、神経科学のような分野に特に適している。
我々の手法の新規性は、モデルパラメータの解釈可能性にあり、神経科学における重要なニーズに対処する。
- 参考スコア(独自算出の注目度): 8.656881800897661
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable classification of time series presents significant challenges in high dimensions. Traditional feature selection methods in the frequency domain often assume sparsity in spectral density matrices (SDMs) or their inverses, which can be restrictive for real-world applications. In this article, we propose a model-based approach for classifying high-dimensional stationary time series by assuming sparsity in the difference between inverse SDMs. Our approach emphasizes the interpretability of model parameters, making it especially suitable for fields like neuroscience, where understanding differences in brain network connectivity across various states is crucial. The estimators for model parameters demonstrate consistency under appropriate conditions. We further propose using standard deep learning optimizers for parameter estimation, employing techniques such as mini-batching and learning rate scheduling. Additionally, we introduce a method to screen the most discriminatory frequencies for classification, which exhibits the sure screening property under general conditions. The flexibility of the proposed model allows the significance of covariates to vary across frequencies, enabling nuanced inferences and deeper insights into the underlying problem. The novelty of our method lies in the interpretability of the model parameters, addressing critical needs in neuroscience. The proposed approaches have been evaluated on simulated examples and the `Alert-vs-Drowsy' EEG dataset.
- Abstract(参考訳): 時系列の解釈可能な分類は、高次元において重要な課題を示す。
周波数領域における伝統的な特徴選択法は、しばしばスペクトル密度行列(SDM)またはそれらの逆数においてスパーシティを仮定する。
本稿では,高次元定常時系列を逆SDMの差分を仮定して,モデルベースで分類する手法を提案する。
我々のアプローチはモデルパラメータの解釈可能性を強調しており、様々な状態における脳ネットワーク接続性の違いを理解することが不可欠である神経科学のような分野に特に適している。
モデルパラメータの推定子は、適切な条件下での一貫性を示す。
さらに,パラメータ推定に標準ディープラーニングオプティマイザを用い,ミニバッチや学習率スケジューリングといった手法を採用することを提案する。
さらに,分類において最も識別頻度の高い検定手法を導入し,一般的な条件下での検定特性を示す。
提案したモデルの柔軟性により、共変量の重要性は周波数によって変化し、微妙な推論と根底にある問題に対する深い洞察を可能にする。
我々の手法の新規性は、モデルパラメータの解釈可能性にあり、神経科学における重要なニーズに対処する。
提案手法はシミュレーション例と 'Alert-vs-Drowsy' EEG データセットに基づいて評価されている。
関連論文リスト
- Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
一般状態空間モデル(英: General State-space Model, SSM)は、統計機械学習において広く用いられ、時系列データに対して最も古典的な生成モデルの一つである。
オンラインシーケンシャルIWAE(OSIWAE)は、潜在状態の推測のためのモデルパラメータとマルコフ認識モデルの両方のオンライン学習を可能にする。
このアプローチは、最近提案されたオンライン変分SMC法よりも理論的によく確立されている。
論文 参考訳(メタデータ) (2024-11-04T16:12:37Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Time Series Clustering with General State Space Models via Stochastic Variational Inference [0.0]
一般状態空間モデル(MSSM)の混合を用いたモデルベース時系列クラスタリングの新しい手法を提案する。
提案手法の利点は,特定の時系列に適した時系列モデルの利用を可能にすることである。
シミュレーションデータセットの実験から,提案手法はクラスタリング,パラメータ推定,クラスタ数推定に有効であることが示された。
論文 参考訳(メタデータ) (2024-06-29T12:48:53Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Data-driven Preference Learning Methods for Sorting Problems with
Multiple Temporal Criteria [17.673512636899076]
本研究では,時間的基準が存在する場合の複数基準ソート問題に対する新しい選好学習手法を提案する。
スケーラビリティを向上し、学習可能な時間割引要素に対応するため、新しい単調リカレントニューラルネットワーク(mRNN)を導入する。
提案するmRNNは、時間とともに、限界値関数とパーソナライズされた時間割引係数を記述することにより、好みのダイナミクスを記述することができる。
論文 参考訳(メタデータ) (2023-09-22T05:08:52Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
本稿では,高次元時系列に対する新しいスパース無限次VARモデルを提案する。
このモデルによって得られたVARMA型力学の時間的・横断的な構造は別々に解釈できる。
統計的効率と解釈可能性の向上は、時間的情報をほとんど失わずに達成できる。
論文 参考訳(メタデータ) (2022-09-02T17:14:24Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。