論文の概要: MVIGER: Multi-View Variational Integration of Complementary Knowledge for Generative Recommender
- arxiv url: http://arxiv.org/abs/2408.08686v3
- Date: Mon, 13 Oct 2025 10:26:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.497769
- Title: MVIGER: Multi-View Variational Integration of Complementary Knowledge for Generative Recommender
- Title(参考訳): MVIGER:生成レコメンデーションのための補完知識の多視点変分統合
- Authors: Tongyoung Kim, Soojin Yoon, Seongku Kang, Jinyoung Yeo, Dongha Lee,
- Abstract要約: 本稿では,入力プロンプトテンプレートや項目インデックスタイプの変化によって生成される出力の不整合に着目した。
本稿では,これらの情報ソースの選択を,事前学習可能なカテゴリ付き潜在変数としてモデル化する,統一的な変分フレームワークMVIGERを提案する。
実世界の3つのデータセットに対するMVIGERの有効性を検証する。
- 参考スコア(独自算出の注目度): 23.305659180882625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language Models (LMs) have been widely used in recommender systems to incorporate textual information of items into item IDs, leveraging their advanced language understanding and generation capabilities. Recently, generative recommender systems have utilized the reasoning abilities of LMs to directly generate index tokens for potential items of interest based on the user's interaction history. To inject diverse item knowledge into LMs, prompt templates with detailed task descriptions and various indexing techniques derived from diverse item information have been explored. This paper focuses on the inconsistency in outputs generated by variations in input prompt templates and item index types, even with the same user's interaction history. Our in-depth quantitative analysis reveals that preference knowledge learned from diverse prompt templates and heterogeneous indices differs significantly, indicating a high potential for complementarity. To fully exploit this complementarity and provide consistent performance under varying prompts and item indices, we propose MVIGER, a unified variational framework that models selection among these information sources as a categorical latent variable with a learnable prior. During inference, this prior enables the model to adaptively select the most relevant source or aggregate predictions across multiple sources, thereby ensuring high-quality recommendation across diverse template-index combinations. We validate the effectiveness of MVIGER on three real-world datasets, demonstrating its superior performance over existing generative recommender baselines through the effective integration of complementary knowledge.
- Abstract(参考訳): 言語モデル(LM)は、アイテムのテキスト情報をアイテムIDに組み込むためのレコメンデーションシステムで広く使われており、その高度な言語理解と生成能力を活用している。
近年,ジェネレーティブレコメンデータシステムでは,ユーザのインタラクション履歴に基づいて,潜在的関心項目のインデックストークンを直接生成するために,LMの推論能力を活用している。
多様な項目の知識をLMに注入するために、詳細なタスク記述と多様な項目情報から派生した様々なインデックス技術を用いてテンプレートをプロンプトする手法が検討されている。
本稿では,入力プロンプトテンプレートや項目インデックスタイプの変化によって生成された出力の矛盾について,ユーザのインタラクション履歴が同じであっても考察する。
詳細な定量的分析により,多種多様なプロンプトテンプレートと異種指標から学習した嗜好知識は,相補性が高い可能性が示唆された。
この相補性を完全に活用し、様々なプロンプトや項目の指標の下で一貫した性能を提供するために、これらの情報ソースの選択を学習可能な先行変数の分類的潜在変数としてモデル化する統一的な変分フレームワークMVIGERを提案する。
この事前推論により、モデルは複数のソースにまたがる最も関連性の高いソースまたは集約予測を適応的に選択できるため、さまざまなテンプレートとインデックスの組み合わせで高品質なレコメンデーションを実現することができる。
本稿では,3つの実世界のデータセットに対するMVIGERの有効性を検証し,相補的知識の効果的な統合による既存の生成推奨基準よりも優れた性能を示す。
関連論文リスト
- RALLRec+: Retrieval Augmented Large Language Model Recommendation with Reasoning [22.495874056980824]
本稿では,Representation Learning and textbfReasoning empowered search-textbfAugmented textbfLarge textbfLanguage model textbfRecommendation (RALLRec+)を提案する。
論文 参考訳(メタデータ) (2025-03-26T11:03:34Z) - Breaking the Clusters: Uniformity-Optimization for Text-Based Sequential Recommendation [17.042627742322427]
従来のシーケンシャルレコメンデーションメソッドは、時間の経過とともにユーザの好みをキャプチャするために明示的なアイテムIDに依存している。
近年,テキストのみの情報をレコメンデーションに活用する研究が進んでいる。
我々は3つのペアワイズアイテムサンプリング戦略を利用するフレームワークUniTを提案する。
論文 参考訳(メタデータ) (2025-02-19T08:35:28Z) - RALLRec: Improving Retrieval Augmented Large Language Model Recommendation with Representation Learning [24.28601381739682]
大規模言語モデル (LLM) は、ユーザの振る舞いを理解するためのレコメンデーションシステムに統合されている。
既存のRAGメソッドは主にテキストのセマンティクスに依存しており、しばしば最も関連性の高い項目を組み込むことができない。
検索強化大言語モデル推薦(RALLRec)のための表現学習を提案する。
論文 参考訳(メタデータ) (2025-02-10T02:15:12Z) - Unifying Generative and Dense Retrieval for Sequential Recommendation [37.402860622707244]
逐次密度検索と生成検索の強みを組み合わせたハイブリッドモデルであるLIGERを提案する。
LIGERは、シーケンシャルな高密度検索を生成検索に統合し、性能差を緩和し、コールドスタートアイテムレコメンデーションを強化する。
このハイブリッドアプローチは、これらのアプローチ間のトレードオフに関する洞察を与え、小規模ベンチマークにおけるレコメンデーションシステムの効率と効率性の向上を示す。
論文 参考訳(メタデータ) (2024-11-27T23:36:59Z) - Beyond Content Relevance: Evaluating Instruction Following in Retrieval Models [17.202017214385826]
本研究では,コンテンツ関連性を超えた各種検索モデルの指示追従能力について検討した。
6つの文書レベル属性にまたがる新しい検索評価ベンチマークを開発した。
以上の結果から,再ランク付けモデルが後続命令の検索モデルを上回っているのに対して,特定の属性を扱う上では依然として課題に直面していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-31T11:47:21Z) - Beyond Retrieval: Generating Narratives in Conversational Recommender Systems [4.912663905306209]
本稿では,会話レコメンデーションにおける自然言語生成タスクのための新しいデータセット(REGEN)を提案する。
我々は、よく知られた生成指標を用いてベンチマークを作成し、レーダLEMを用いて新しいデータセットの自動評価を行う。
そして、私たちの知る限りでは、レコメンデーター信号を理解し、リッチな物語を生成することにおけるLLMの能力を分析する最初の試みである。
論文 参考訳(メタデータ) (2024-10-22T07:53:41Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
動的セマンティック・インデックス・パラダイムを採用した最初の生成型RSであるTTDS(Twin-Tower Dynamic Semantic Recommender)を提案する。
より具体的には、ツイン・トワー・セマンティック・トークン・ジェネレータをLLMベースのレコメンデータに統合する動的知識融合フレームワークを初めて提案する。
提案したTTDSレコメンデータは,平均19.41%のヒットレート,20.84%のNDCG測定値を実現している。
論文 参考訳(メタデータ) (2024-09-14T01:45:04Z) - Exploring Information Retrieval Landscapes: An Investigation of a Novel Evaluation Techniques and Comparative Document Splitting Methods [0.0]
本研究では, 教科書の構造的性質, 記事の簡潔さ, 小説の物語的複雑さについて, 明確な検索戦略が必要であることを示した。
オープンソースのモデルを用いて,質問対と回答対の包括的データセットを生成する新しい評価手法を提案する。
評価には、SequenceMatcher、BLEU、METEOR、BERT Scoreなどの重み付けされたスコアを使用して、システムの正確性と妥当性を評価する。
論文 参考訳(メタデータ) (2024-09-13T02:08:47Z) - UserSumBench: A Benchmark Framework for Evaluating User Summarization Approaches [25.133460380551327]
大規模言語モデル(LLM)は、大量のユーザアクティビティデータからユーザ要約を生成する際、顕著な能力を示している。
これらの要約は、好みや興味などの重要なユーザー情報を取り込み、パーソナライズ・アプリケーションには有用である。
しかし, 新たな要約手法の開発は, ゼロ・トラストラベルの欠如, ユーザ・サマリー固有の主観性, 人的評価などによって妨げられている。
論文 参考訳(メタデータ) (2024-08-30T01:56:57Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
論文 参考訳(メタデータ) (2024-03-01T10:38:07Z) - Enhancing Few-shot NER with Prompt Ordering based Data Augmentation [59.69108119752584]
本稿では,PODA(Prompt Ordering Based Data Augmentation)手法を提案する。
3つのパブリックNERデータセットの実験結果とさらなる分析により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-19T16:25:43Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
本稿では,対象候補の識別子を自己回帰的に復号する新たな生成検索手法を提案する。
そのために、各項目のセマンティックIDとして機能するために、意味論的に意味のあるコードワードを作成します。
提案手法を用いて学習した推薦システムは,様々なデータセット上での現在のSOTAモデルよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-05-08T21:48:17Z) - SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval [11.38022203865326]
SPLADEモデルは、最先端の高密度かつスパースなアプローチに関して、高度にスパースな表現と競争結果を提供する。
我々は、プール機構を変更し、文書拡張のみに基づいてモデルをベンチマークし、蒸留で訓練されたモデルを導入する。
全体として、SPLADEはTREC DL 2019のNDCG@10で9ドル以上のゲインで大幅に改善され、BEIRベンチマークで最先端の結果が得られた。
論文 参考訳(メタデータ) (2021-09-21T10:43:42Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
論文 参考訳(メタデータ) (2020-05-21T12:28:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。