論文の概要: Quantifying the Effectiveness of Student Organization Activities using Natural Language Processing
- arxiv url: http://arxiv.org/abs/2408.08694v1
- Date: Fri, 16 Aug 2024 12:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 15:35:21.432001
- Title: Quantifying the Effectiveness of Student Organization Activities using Natural Language Processing
- Title(参考訳): 自然言語処理による学生組織活動の効果の定量化
- Authors: Lyberius Ennio F. Taruc, Arvin R. De La Cruz,
- Abstract要約: 本研究では,学生組織活動の有効性を定量化する機械学習ワークフローを開発することを目的とする。
この研究では、Hugging FaceのTransformer Pipelineとして、pysentimientoツールキットを介して呼ばれるBERT(Large Language Model)の双方向表現を使用している。
その結果,BERT LLMは製品レビューや投稿コメント以外の感情分析にも有効であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Student extracurricular activities play an important role in enriching the students' educational experiences. With the increasing popularity of Machine Learning and Natural Language Processing, it becomes a logical step that incorporating ML-NLP in improving extracurricular activities is a potential focus of study in Artificial Intelligence (AI). This research study aims to develop a machine learning workflow that will quantify the effectiveness of student-organized activities based on student emotional responses using sentiment analysis. The study uses the Bidirectional Encoder Representations from Transformers (BERT) Large Language Model (LLM) called via the pysentimiento toolkit, as a Transformer pipeline in Hugging Face. A sample data set from Organization C, a Recognized Student Organization (RSO) of a higher educational institute in the Philippines, College X, was used to develop the workflow. The workflow consisted of data preprocessing, key feature selection, LLM feature processing, and score aggregation, resulting in an Event Score for each data set. The results show that the BERT LLM can also be used effectively in analyzing sentiment beyond product reviews and post comments. For the student affairs offices of educational institutions, this study can provide a practical example of how NLP can be applied to real-world scenarios, showcasing the potential impact of data-driven decision making.
- Abstract(参考訳): 学生の課外活動は、学生の教育経験を豊かにする上で重要な役割を担っている。
機械学習と自然言語処理の人気が高まるにつれ、ML-NLPを課外活動の改善に取り入れることが人工知能(AI)研究の潜在的焦点となる。
本研究の目的は、感情分析を用いて学生の感情反応に基づいて、学生が組織した活動の有効性を定量化する機械学習ワークフローを開発することである。
この研究は、pysentimientoツールキットを介して呼ばれるBERT(Large Language Model)からの双方向エンコーダ表現を、Hugging FaceのTransformerパイプラインとして使用している。
フィリピンの高等教育機関であるCollege Xの認知学生組織(RSO)であるOrganization Cから得られたサンプルデータをワークフローの開発に利用した。
ワークフローは、データ前処理、キー機能選択、LLM機能処理、スコアアグリゲーションで構成され、結果としてデータセット毎にEvent Scoreが生成される。
その結果,BERT LLMは製品レビューや投稿コメント以外の感情分析にも有効であることがわかった。
本研究は,教育機関の学生事務室において,NLPが実世界のシナリオにどのように適用できるかを実例として示し,データ駆動意思決定の潜在的影響を示す。
関連論文リスト
- From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。
本調査は,LSMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2025-02-17T12:58:17Z) - Machine Learning-Driven Student Performance Prediction for Enhancing Tiered Instruction [11.564820268803619]
学生のパフォーマンス予測は、教育データマイニングにおいて最も重要な課題の1つである。
広範な予測実験にもかかわらず、機械学習手法は実践的な教育戦略に効果的に統合されていない。
本研究は,機械学習による学生の成績予測とタインド・インストラクションを統合し,対象科目における学生の成績向上を目的とした。
論文 参考訳(メタデータ) (2025-02-05T13:13:25Z) - A Universal Prompting Strategy for Extracting Process Model Information from Natural Language Text using Large Language Models [0.8899670429041453]
生成型大規模言語モデル(LLM)は,広範囲なデータを必要とすることなく,非常に高品質なNLPタスクを解くことができることを示す。
新たなプロンプト戦略に基づいて,LLMが最先端の機械学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-26T06:39:35Z) - What Affects the Stability of Tool Learning? An Empirical Study on the Robustness of Tool Learning Frameworks [33.51887014808227]
本稿では,ツール学習フレームワークの性能に及ぼす内部要因と外部要因の影響について検討する。
今後の研究には、LCMが試行錯誤の増加から大きな恩恵を受けることができるという観察など、洞察に富んだ結論がいくつか見出される。
論文 参考訳(メタデータ) (2024-07-03T11:06:05Z) - Evolving Knowledge Distillation with Large Language Models and Active
Learning [46.85430680828938]
大規模言語モデル(LLM)は、様々なNLPタスクにまたがる顕著な機能を示している。
従来の研究は、注釈付きデータを生成してLPMの知識をより小さなモデルに抽出しようと試みてきた。
EvoKD: Evolving Knowledge Distillationを提案する。これは、アクティブラーニングの概念を利用して、大規模言語モデルを用いたデータ生成のプロセスをインタラクティブに強化する。
論文 参考訳(メタデータ) (2024-03-11T03:55:24Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
大規模な現実世界のAPIを制御するために設計された新しいツール呼び出しパイプラインを導入します。
このパイプラインは人間のタスク解決プロセスを反映し、複雑な実際のユーザクエリに対処する。
ToolBenchベンチマークにおけるSum2Actパイプラインの実証的な評価は、大幅なパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2024-02-28T08:42:23Z) - Transformer-based Causal Language Models Perform Clustering [20.430255724239448]
簡単な指示追従タスクを導入し、合成データセットを用いてトランスフォーマーに基づく因果言語モデルを分析する。
本研究は,本モデルが隠れ空間内のデータをクラスタリングすることで,タスク固有の情報を学習し,学習中にこのクラスタリングプロセスが動的に進化することを示唆している。
論文 参考訳(メタデータ) (2024-02-19T14:02:31Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - Learning Action-Effect Dynamics for Hypothetical Vision-Language
Reasoning Task [50.72283841720014]
本研究では,行動の効果に関する推論を改善する新しい学習戦略を提案する。
本稿では,提案手法の有効性を実証し,性能,データ効率,一般化能力の観点から,従来のベースラインに対する優位性を論じる。
論文 参考訳(メタデータ) (2022-12-07T05:41:58Z) - Process-BERT: A Framework for Representation Learning on Educational
Process Data [68.8204255655161]
本稿では,教育プロセスデータの表現を学習するためのフレームワークを提案する。
我々のフレームワークは、BERT型の目的を用いて、シーケンシャルなプロセスデータから表現を学習する事前学習ステップで構成されています。
当社のフレームワークは,2019年国のレポートカードデータマイニングコンペティションデータセットに適用しています。
論文 参考訳(メタデータ) (2022-04-28T16:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。