論文の概要: Cybench: A Framework for Evaluating Cybersecurity Capabilities and Risks of Language Models
- arxiv url: http://arxiv.org/abs/2408.08926v4
- Date: Sat, 12 Apr 2025 21:26:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 00:15:57.15307
- Title: Cybench: A Framework for Evaluating Cybersecurity Capabilities and Risks of Language Models
- Title(参考訳): Cybench: セキュリティ能力と言語モデルのリスクを評価するフレームワーク
- Authors: Andy K. Zhang, Neil Perry, Riya Dulepet, Joey Ji, Celeste Menders, Justin W. Lin, Eliot Jones, Gashon Hussein, Samantha Liu, Donovan Jasper, Pura Peetathawatchai, Ari Glenn, Vikram Sivashankar, Daniel Zamoshchin, Leo Glikbarg, Derek Askaryar, Mike Yang, Teddy Zhang, Rishi Alluri, Nathan Tran, Rinnara Sangpisit, Polycarpos Yiorkadjis, Kenny Osele, Gautham Raghupathi, Dan Boneh, Daniel E. Ho, Percy Liang,
- Abstract要約: Cybenchは、サイバーセキュリティタスクを特定し、それらのタスク上でエージェントを評価するためのフレームワークである。
4つの異なるCTFコンペティションから、40のプロフェッショナルレベルのCapture the Flag(CTF)タスクが含まれています。
GPT-4o, OpenAI o1-preview, Claude 3 Opus, Claude 3.5 Sonnet, Mixtral 8x22b Instruct, Gemini 1.5 Pro, Llama 3 70B Chat, Llama 3.1 405B Instruct。
- 参考スコア(独自算出の注目度): 33.1538965735133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language Model (LM) agents for cybersecurity that are capable of autonomously identifying vulnerabilities and executing exploits have potential to cause real-world impact. Policymakers, model providers, and researchers in the AI and cybersecurity communities are interested in quantifying the capabilities of such agents to help mitigate cyberrisk and investigate opportunities for penetration testing. Toward that end, we introduce Cybench, a framework for specifying cybersecurity tasks and evaluating agents on those tasks. We include 40 professional-level Capture the Flag (CTF) tasks from 4 distinct CTF competitions, chosen to be recent, meaningful, and spanning a wide range of difficulties. Each task includes its own description, starter files, and is initialized in an environment where an agent can execute commands and observe outputs. Since many tasks are beyond the capabilities of existing LM agents, we introduce subtasks for each task, which break down a task into intermediary steps for a more detailed evaluation. To evaluate agent capabilities, we construct a cybersecurity agent and evaluate 8 models: GPT-4o, OpenAI o1-preview, Claude 3 Opus, Claude 3.5 Sonnet, Mixtral 8x22b Instruct, Gemini 1.5 Pro, Llama 3 70B Chat, and Llama 3.1 405B Instruct. For the top performing models (GPT-4o and Claude 3.5 Sonnet), we further investigate performance across 4 agent scaffolds (structed bash, action-only, pseudoterminal, and web search). Without subtask guidance, agents leveraging Claude 3.5 Sonnet, GPT-4o, OpenAI o1-preview, and Claude 3 Opus successfully solved complete tasks that took human teams up to 11 minutes to solve. In comparison, the most difficult task took human teams 24 hours and 54 minutes to solve. All code and data are publicly available at https://cybench.github.io.
- Abstract(参考訳): 脆弱性を自律的に識別し、エクスプロイトを実行するサイバーセキュリティのための言語モデル(LM)エージェントは、現実世界に影響を及ぼす可能性がある。
政策立案者、モデル提供者、AIおよびサイバーセキュリティコミュニティの研究者は、サイバーリスクを軽減し、侵入テストの機会を調べるためにそのようなエージェントの能力を定量化することに興味を持っている。
そこで,サイバーセキュリティタスクの特定と,それらのタスクに対するエージェント評価のためのフレームワークであるCybenchを紹介する。
4つの異なるCTFコンペティションから、40のプロフェッショナルレベルのCapture the Flag(CTF)タスクが含まれています。
各タスクは独自の記述、スターターファイルを含み、エージェントがコマンドを実行して出力を観察できる環境で初期化される。
多くのタスクは既存のLMエージェントの能力を超えており、タスクごとにサブタスクを導入し、タスクを中間ステップに分解してより詳細な評価を行う。
GPT-4o, OpenAI o1-preview, Claude 3 Opus, Claude 3.5 Sonnet, Mixtral 8x22b Instruct, Gemini 1.5 Pro, Llama 3 70B Chat, Llama 3.1 405B Instruct。
トップパフォーマンスモデル(GPT-4oとClaude 3.5 Sonnet)については、さらに4つのエージェントの足場(構造的バッシュ、アクションのみ、疑似終端、Web検索)のパフォーマンスについて検討する。
サブタスクのガイダンスなしでは、Claude 3.5 Sonnet、GPT-4o、OpenAI o1-preview、Claude 3 Opusを活用するエージェントは、人間のチームが解くのに最大11分かかった完全なタスクをうまく解決した。
対照的に、最も難しいタスクは、解決に24時間54分を要した。
すべてのコードとデータはhttps://cybench.github.io.comで公開されている。
関連論文リスト
- Autonomous Penetration Testing: Solving Capture-the-Flag Challenges with LLMs [0.0]
本研究は,OverTheWireのBanditキャプチャ・ザ・フラッグゲームにモデルを接続することにより,GPT-4oが初心者レベルの攻撃的セキュリティタスクを自律的に解く能力を評価する。
技術的に単一コマンドSSHフレームワークと互換性のある25のレベルのうち、GPT-4oは18の無効化と、全体の80%の成功率を示す最小のプロンプトのヒントの後に2のレベルを解決した。
論文 参考訳(メタデータ) (2025-08-01T20:11:58Z) - Measuring Harmfulness of Computer-Using Agents [7.662513862243521]
コンピュータ利用エージェント(CUA)は、コンピュータを自律的に制御し、マルチステップアクションを実行する。
CUAHarmは104名の専門家による現実的な誤用リスクで構成されている。
我々はClaude Sonnet, GPT-4o, Gemini Pro 1.5, Llama-3.3-70B, Mistral Large 2などのオープンソースおよびプロプライエタリなLMを評価した。
論文 参考訳(メタデータ) (2025-07-31T07:02:19Z) - OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
OpenAgentSafetyは,8つの危機リスクカテゴリにまたがるエージェントの動作を評価する包括的なフレームワークである。
従来の作業とは異なり、我々のフレームワークは、Webブラウザ、コード実行環境、ファイルシステム、bashシェル、メッセージングプラットフォームなど、実際のツールと対話するエージェントを評価します。
ルールベースの分析とLSM-as-judgeアセスメントを組み合わせることで、過度な行動と微妙な不安全行動の両方を検出する。
論文 参考訳(メタデータ) (2025-07-08T16:18:54Z) - BountyBench: Dollar Impact of AI Agent Attackers and Defenders on Real-World Cybersecurity Systems [62.17474934536671]
我々は、現実世界のシステムを進化させる際に、攻撃的かつ防御的なサイバー能力を捕獲する最初の枠組みを紹介する。
脆弱性ライフサイクルを捉えるために、3つのタスクタイプを定義します。検出(新たな脆弱性の検出)、エクスプロイト(特定の脆弱性の探索)、パッチ(特定の脆弱性のパッチ)。
Claude Code,OpenAI Codex CLI with o3-high and o4-mini,カスタムエージェント with o3-high, GPT-4.1, Gemini 2.5 Pro Preview, Claude 3.7 Sonnet Thinking, DeepSeek-R1。
論文 参考訳(メタデータ) (2025-05-21T07:44:52Z) - RedTeamLLM: an Agentic AI framework for offensive security [0.0]
我々は,ペンテストタスクの自動化のための総合的なセキュリティモデルを備えた統合アーキテクチャであるRedTeamLLMを提案し,評価する。
RedTeamLLMは3つの重要なステップに従っている。
評価は、一連のエントリーレベルの自動解決を通じて行われるが、簡単なことではなく、CTFの課題である。
論文 参考訳(メタデータ) (2025-05-11T09:19:10Z) - Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems [50.29939179830491]
LLMマルチエージェントシステムにおける障害帰属は、まだ調査が過小評価されており、労働集約的である。
本稿では,3つの自動故障帰属手法の開発と評価を行い,その欠点と欠点を要約する。
最良の方法は、障害に応答するエージェントを特定する際に53.5%の精度を達成するが、故障の特定には14.2%しか役に立たない。
論文 参考訳(メタデータ) (2025-04-30T23:09:44Z) - SOPBench: Evaluating Language Agents at Following Standard Operating Procedures and Constraints [59.645885492637845]
SOPBenchは、各サービス固有のSOPコードプログラムを実行可能な関数の有向グラフに変換する評価パイプラインである。
提案手法では,各サービス固有のSOPコードプログラムを実行可能関数の有向グラフに変換し,自然言語SOP記述に基づいてこれらの関数を呼び出しなければならない。
我々は18の先行モデルを評価し、上位モデルでさえタスクが困難であることを示す。
論文 参考訳(メタデータ) (2025-03-11T17:53:02Z) - D-CIPHER: Dynamic Collaborative Intelligent Agents with Planning and Heterogeneous Execution for Enhanced Reasoning in Offensive Security [22.86304661035188]
大規模言語モデル(LLM)は、サイバーセキュリティにおいて様々な方法で使用されている。
CTF(Capture the Flag)の課題は、LLMエージェントの自動タスク計画能力を評価するためのベンチマークとして機能する。
協調型CTF問題解決のためのD-CIPHERマルチエージェントLLMフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-15T23:43:18Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
私たちは小さなソフトウェア企業環境を模倣したデータによる自己完結型環境を構築します。
最も競争力のあるエージェントでは、タスクの24%が自律的に完了できます。
これは、LMエージェントによるタスク自動化に関するニュアンスな絵を描く。
論文 参考訳(メタデータ) (2024-12-18T18:55:40Z) - Two Heads Are Better Than One: Collaborative LLM Embodied Agents for Human-Robot Interaction [1.6574413179773757]
大規模言語モデル(LLM)は、自然言語コマンドを解釈するために、その膨大な理解を活用できなければならない。
しかし、これらのモデルは幻覚に悩まされ、安全上の問題やタスクからの逸脱を引き起こす可能性がある。
本研究では、一つの独立したAIエージェントに対して複数のコラボレーティブAIシステムがテストされ、他のドメインの成功が人間とロボットのインタラクション性能の改善につながるかどうかを判定した。
論文 参考訳(メタデータ) (2024-11-23T02:47:12Z) - Agent S: An Open Agentic Framework that Uses Computers Like a Human [31.16046798529319]
我々は、GUI(Graphical User Interface)を通じてコンピュータとの自律的なインタラクションを可能にするオープンエージェントフレームワークであるAgent Sを提案する。
Agent Sは、ドメイン固有の知識の取得、長いタスクの水平線の計画、動的で一様でないインターフェイスの処理という、コンピュータタスクの自動化における3つの重要な課題に対処することを目指している。
論文 参考訳(メタデータ) (2024-10-10T17:43:51Z) - On the Resilience of Multi-Agent Systems with Malicious Agents [58.79302663733702]
本稿では,悪意のあるエージェント下でのマルチエージェントシステムのレジリエンスについて検討する。
我々は、任意のエージェントを悪意のあるエージェントに変換する2つの方法、AutoTransformとAutoInjectを考案した。
各エージェントが他のエージェントの出力に挑戦するためのメカニズムを導入するか、あるいはメッセージのレビューと修正を行う追加のエージェントを導入することで、システムのレジリエンスを高めることができることを示す。
論文 参考訳(メタデータ) (2024-08-02T03:25:20Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
大規模マルチタスクエージェント理解(MMAU)ベンチマークは、複雑な環境設定を必要としない包括的なオフラインタスクを特徴としている。
ツールユース、DAG(Directed Acyclic Graph)QA、データサイエンスと機械学習コーディング、コンテストレベルのプログラミング、数学の5分野にわたるモデルを評価する。
3K以上の異なるプロンプトを含む20の精巧に設計されたタスクにより、MMAUはLLMエージェントの強度と限界を評価するための包括的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-07-18T00:58:41Z) - CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents [49.68117560675367]
Crabは、クロス環境タスクをサポートするように設計された最初のベンチマークフレームワークである。
私たちのフレームワークは複数のデバイスをサポートし、Pythonインターフェースで簡単に任意の環境に拡張できます。
実験の結果、GPT-4oの1剤が38.01%の最高完成率を達成することが示された。
論文 参考訳(メタデータ) (2024-07-01T17:55:04Z) - Husky: A Unified, Open-Source Language Agent for Multi-Step Reasoning [67.26776442697184]
我々はHuskyを紹介した。Huskyは総合的でオープンソースの言語エージェントで、統一されたアクション空間について推論することを学ぶ。
ハスキーは、(1)与えられたタスクを解決するために次のアクションを生成すること、2)エキスパートモデルを使用してアクションを実行すること、の2つの段階を繰り返す。
実験の結果,Huskyは14の評価データセットで先行言語エージェントよりも優れていた。
論文 参考訳(メタデータ) (2024-06-10T17:07:25Z) - A Preliminary Study on Using Large Language Models in Software
Pentesting [2.0551676463612636]
大規模言語モデル(LLM)は、セキュリティタスクを自動化するための有望な可能性を提供すると考えられている。
ソフトウェアペンテスティングにおけるLLMの使用について検討し,ソースコード中のソフトウェアセキュリティ脆弱性を自動的に識別する作業を行う。
論文 参考訳(メタデータ) (2024-01-30T21:42:59Z) - MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation [96.71370747681078]
我々は,CIFAR-10におけるモデル性能の改善から,BabyLMのような最近の研究課題まで,13のタスクからなるMLAgentBenchを紹介した。
各タスクに対して、エージェントはファイルの読み書き、コードの実行、出力の検査などのアクションを実行することができる。
我々は、Claude v1.0、Claude v2.1、Claude v3 Opus、GPT-4、GPT-4-turbo、Gemini-Pro、Mixtralに基づいてベンチマークエージェントをベンチマークし、Claude v3 Opusエージェントが成功率の点で最高であることを示す。
論文 参考訳(メタデータ) (2023-10-05T04:06:12Z) - AgentSims: An Open-Source Sandbox for Large Language Model Evaluation [9.156652770482268]
既存の評価手法は,(1)制約付き評価能力,(2)脆弱なベンチマーク,(3)客観的な指標などの欠点に悩まされている。
LLMエージェントがシミュレーション環境でタスクを完了させるタスクベース評価は、上記の問題を解決するための一対一のソリューションである。
AgentSimsは、あらゆる分野の研究者が興味のある特定の能力をテストするための、使いやすいインフラだ。
論文 参考訳(メタデータ) (2023-08-08T03:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。