論文の概要: Authorship Attribution in the Era of LLMs: Problems, Methodologies, and Challenges
- arxiv url: http://arxiv.org/abs/2408.08946v1
- Date: Fri, 16 Aug 2024 17:58:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 23:26:14.956571
- Title: Authorship Attribution in the Era of LLMs: Problems, Methodologies, and Challenges
- Title(参考訳): LLM時代における著者の貢献--問題・方法論・課題
- Authors: Baixiang Huang, Canyu Chen, Kai Shu,
- Abstract要約: LLM(Large Language Models)の急速な進歩は、人間と機械のオーサシップの境界線を曖昧にしている。
この文献レビューは、この急速に発展する分野における芸術の状況を理解することに興味を持つ研究者や実践者のためのロードマップを提供する。
- 参考スコア(独自算出の注目度): 16.35265384114857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate attribution of authorship is crucial for maintaining the integrity of digital content, improving forensic investigations, and mitigating the risks of misinformation and plagiarism. Addressing the imperative need for proper authorship attribution is essential to uphold the credibility and accountability of authentic authorship. The rapid advancements of Large Language Models (LLMs) have blurred the lines between human and machine authorship, posing significant challenges for traditional methods. We presents a comprehensive literature review that examines the latest research on authorship attribution in the era of LLMs. This survey systematically explores the landscape of this field by categorizing four representative problems: (1) Human-written Text Attribution; (2) LLM-generated Text Detection; (3) LLM-generated Text Attribution; and (4) Human-LLM Co-authored Text Attribution. We also discuss the challenges related to ensuring the generalization and explainability of authorship attribution methods. Generalization requires the ability to generalize across various domains, while explainability emphasizes providing transparent and understandable insights into the decisions made by these models. By evaluating the strengths and limitations of existing methods and benchmarks, we identify key open problems and future research directions in this field. This literature review serves a roadmap for researchers and practitioners interested in understanding the state of the art in this rapidly evolving field. Additional resources and a curated list of papers are available and regularly updated at https://llm-authorship.github.io
- Abstract(参考訳): 著者の正確な帰属は、デジタルコンテンツの完全性を維持し、法医学的な調査を改善し、誤情報や盗作のリスクを軽減するために重要である。
真の著作者の信頼性と説明責任を維持するためには、適切な著作者帰属の強制的な要求に対処することが不可欠である。
LLM(Large Language Models)の急速な進歩は、人間と機械のオーサシップの境界を曖昧にし、従来の手法に重大な課題をもたらした。
本稿では, LLM 時代における著者帰属に関する最新の研究を概観する総合的な文献レビューを紹介する。
本調査は,(1)人文テキスト属性,(2)LLM生成テキスト検出,(3)LLM生成テキスト属性,(4)Human-LLM共著テキスト属性の4つを分類することにより,この分野の景観を体系的に探索する。
また、著者帰属法の一般化と説明可能性の確保に関わる課題についても論じる。
一般化には、さまざまな領域をまたいで一般化する能力が必要であるが、説明可能性には、これらのモデルによる決定に対する透明性と理解可能な洞察が強調されている。
既存の手法とベンチマークの長所と短所を評価することにより、この分野における重要なオープン問題と今後の研究方向性を明らかにする。
この文献レビューは、この急速に発展する分野における最先端の理解に関心を持つ研究者や実践者のためのロードマップを提供する。
追加のリソースとドキュメントのキュレートされたリストはhttps://llm-authorship.github.ioで定期的に更新されている。
関連論文リスト
- A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution [57.309390098903]
著者の属性は、文書の起源または著者を特定することを目的としている。
大きな言語モデル(LLM)とその深い推論能力と長距離テキストアソシエーションを維持する能力は、有望な代替手段を提供する。
IMDbおよびブログデータセットを用いた結果, 著者10名を対象に, 著者1名に対して, 85%の精度が得られた。
論文 参考訳(メタデータ) (2024-10-29T04:14:23Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
大型言語モデル (LLM) は文法の修正、内容の拡張、文体の改良によって人間の書き方を変えてきた。
既存の検出方法は、主に単一機能分析とバイナリ分類に依存しているが、学術的文脈においてLLM生成テキストを効果的に識別することができないことが多い。
低レベル構造, 高レベル意味, 深層言語的特徴を統合することで, LLM生成テキストを検出する多レベルきめ細粒度検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-18T07:25:00Z) - Text Generation: A Systematic Literature Review of Tasks, Evaluation, and Challenges [7.140449861888235]
このレビューでは、テキスト生成の作業を5つの主要なタスクに分類する。
各タスクについて、関連する特徴、サブタスク、および特定の課題についてレビューする。
近年のテキスト生成論文では,タスクやサブタスクに共通する9つの顕著な課題が報告されている。
論文 参考訳(メタデータ) (2024-05-24T14:38:11Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Authenticity in Authorship: The Writer's Integrity Framework for Verifying Human-Generated Text [0.0]
著者の一体性(Writer's Integrity)"フレームワークは、製品ではなく、執筆プロセスを監視し、人間の著作者の行動的な足跡を捉えます。
我々は,人間の知的作業の検証に革命をもたらす可能性を強調し,学術的完全性と知的財産権の維持におけるその役割を強調した。
本稿では、IT企業が効果的にフレームワークをマネタイズするためのビジネスモデルを概説する。
論文 参考訳(メタデータ) (2024-04-05T23:00:34Z) - Can Large Language Models Identify Authorship? [16.35265384114857]
大規模言語モデル(LLM)は、推論と問題解決の特別な能力を示している。
1) LLM はゼロショット・エンド・ツー・エンドのオーサシップ検証を効果的に行うことができるか?
2) LLM は,複数の候補作家(例えば,10,20)の著者を正確に帰属させることができるか?
論文 参考訳(メタデータ) (2024-03-13T03:22:02Z) - A Survey of AI-generated Text Forensic Systems: Detection, Attribution,
and Characterization [13.44566185792894]
AI生成テキスト鑑定は、LLMの誤用に対処する新たな分野である。
本稿では,検出,帰属,特性の3つの主要な柱に着目した詳細な分類法を紹介する。
我々は、AI生成テキスト法医学研究の利用可能なリソースを探究し、AI時代の法医学システムの進化的課題と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-03-02T09:39:13Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。