論文の概要: An optimal pairwise merge algorithm improves the quality and consistency of nonnegative matrix factorization
- arxiv url: http://arxiv.org/abs/2408.09013v2
- Date: Mon, 28 Oct 2024 20:05:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 07:07:05.265937
- Title: An optimal pairwise merge algorithm improves the quality and consistency of nonnegative matrix factorization
- Title(参考訳): 最適ペアワイズマージアルゴリズムは非負行列分解の品質と一貫性を改善する
- Authors: Youdong Guo, Timothy E. Holy,
- Abstract要約: 非負行列分解(NMF)は特徴抽出の鍵となる手法であり、ソース分離に広く用いられている。
ここでは、これらの弱点のいくつかは、高次元の特徴空間でNMFを実行することによって緩和される可能性があることを示す。
提案手法は,非理想的NMF解の局所最適化に有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-negative matrix factorization (NMF) is a key technique for feature extraction and widely used in source separation. However, existing algorithms may converge to poor local minima, or to one of several minima with similar objective value but differing feature parametrizations. Here we show that some of these weaknesses may be mitigated by performing NMF in a higher-dimensional feature space and then iteratively combining components with an analytically-solvable pairwise merge strategy. Experimental results demonstrate our method helps non-ideal NMF solutions escape to better local optima and achieve greater consistency of the solutions. Despite these extra steps, our approach exhibits similar computational performance to established methods by reducing the occurrence of "plateau phenomenon" near saddle points. Moreover, the results also illustrate that our method is compatible with different NMF algorithms. Thus, this can be recommended as a preferred approach for most applications of NMF.
- Abstract(参考訳): 非負行列分解(NMF)は特徴抽出の鍵となる手法であり、ソース分離に広く用いられている。
しかし、既存のアルゴリズムは、劣悪な局所最小値や、類似の目的値を持ついくつかの最小値の1つに収束するが、特徴パラメトリゼーションが異なる。
ここでは、これらの弱点のいくつかは、高次元の特徴空間でNMFを実行し、分析的に解決可能なペアワイズマージ戦略と繰り返し組み合わせることで緩和される可能性があることを示す。
実験により,非理想的NMF解の局所最適化と解の整合性向上に寄与することを示す。
これらの余分なステップにもかかわらず,本手法はサドル点付近の「プラトー現象」の発生を低減し,確立された手法と類似した計算性能を示す。
さらに,本手法は異なるNMFアルゴリズムと互換性があることを示す。
したがって、これはNMFのほとんどのアプリケーションで好まれるアプローチとして推奨できる。
関連論文リスト
- Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Contaminated Images Recovery by Implementing Non-negative Matrix
Factorisation [0.0]
我々は,従来のNMF,HCNMF,L2,1-NMFアルゴリズムのロバスト性を理論的に検討し,ORLおよび拡張YaleBデータセットのロバスト性を示す実験セットを実行する。
これらの手法の計算コストのため、HCNMFやL2,1-NMFモデルのような最終モデルは、この研究のパラメータに収束しない。
論文 参考訳(メタデータ) (2022-11-08T13:50:27Z) - Supervised Class-pairwise NMF for Data Representation and Classification [2.7320863258816512]
非負行列分解(NMF)に基づく手法は、特定のタスクにモデルを適応させるためにコスト関数に新しい用語を追加する。
NMF法は、因子化行列を推定するための教師なしアプローチを採用する。
論文 参考訳(メタデータ) (2022-09-28T04:33:03Z) - Adaptive Weighted Nonnegative Matrix Factorization for Robust Feature
Representation [9.844796520630522]
非負行列分解(NMF)は、機械学習における次元の減少に広く用いられている。
従来のNMFは、ノイズに敏感であるように、アウトリーチを適切に扱わない。
本稿では,各データポイントの異なる重要性を強調するため,重み付き適応重み付きNMFを提案する。
論文 参考訳(メタデータ) (2022-06-07T05:27:08Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
非負の行列因子化(NMF)は、非負のデータを部品ベースの表現で表すことの有効性から、近年広く研究されている。
そこで本研究では,係数行列に対数ノルムを課した新しいNMF法を提案する。
提案手法のロバスト性を高めるために,$ell_2,log$-(pseudo) ノルムを新たに提案した。
論文 参考訳(メタデータ) (2022-04-22T11:38:10Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
本稿では,FNMF(Feature weighted Non- negative Matrix Factorization)を提案する。
FNMFはその重要性に応じて特徴の重みを適応的に学習する。
提案する最適化アルゴリズムを用いて効率的に解くことができる。
論文 参考訳(メタデータ) (2021-03-24T21:17:17Z) - Positive Semidefinite Matrix Factorization: A Connection with Phase
Retrieval and Affine Rank Minimization [71.57324258813674]
位相探索(PR)とアフィンランク最小化(ARM)アルゴリズムに基づいてPSDMFアルゴリズムを設計可能であることを示す。
このアイデアに触発され、反復的ハードしきい値(IHT)に基づくPSDMFアルゴリズムの新たなファミリーを導入する。
論文 参考訳(メタデータ) (2020-07-24T06:10:19Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
複数の異なる損失を最小化しなければならない最適化問題を考える。
提案手法は、各イテレーションにおける降下方向を計算し、目的関数の相対的減少を等しく保証する。
論文 参考訳(メタデータ) (2020-07-14T09:50:33Z) - Sparse Separable Nonnegative Matrix Factorization [22.679160149512377]
非負行列分解(NMF)の新しい変種を提案する。
分離性は、第1NMF因子の列が入力行列の列に等しいのに対して、スパース性は第2NMF因子の列がスパースであることが要求される。
雑音のない環境では、軽微な仮定の下で、我々のアルゴリズムが真に根底にある情報源を復元することを証明する。
論文 参考訳(メタデータ) (2020-06-13T03:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。