Imaginary Hamiltonian variational ansatz for combinatorial optimization problems
- URL: http://arxiv.org/abs/2408.09083v1
- Date: Sat, 17 Aug 2024 03:34:17 GMT
- Title: Imaginary Hamiltonian variational ansatz for combinatorial optimization problems
- Authors: Xiaoyang Wang, Yahui Chai, Xu Feng, Yibin Guo, Karl Jansen, Cenk Tüysüz,
- Abstract summary: We introduce a tree arrangement of the parametrized quantum gates, enabling the exact solution of arbitrary tree graphs using the one-round $i$HVA.
Our ansatz solves MaxCut exactly for graphs with up to 24 nodes and $D leq 5$, whereas only approximate solutions can be derived by the classical near-optimal Goemans-Williamson algorithm.
- Score: 3.14105061893604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obtaining exact solutions to combinatorial optimization problems using classical computing is computationally expensive. The current tenet in the field is that quantum computers can address these problems more efficiently. While promising algorithms require fault-tolerant quantum hardware, variational algorithms have emerged as viable candidates for near-term devices. The success of these algorithms hinges on multiple factors, with the design of the ansatz having the utmost importance. It is known that popular approaches such as quantum approximate optimization algorithm (QAOA) and quantum annealing suffer from adiabatic bottlenecks, that lead to either larger circuit depth or evolution time. On the other hand, the evolution time of imaginary time evolution is bounded by the inverse energy gap of the Hamiltonian, which is constant for most non-critical physical systems. In this work, we propose imaginary Hamiltonian variational ansatz ($i$HVA) inspired by quantum imaginary time evolution to solve the MaxCut problem. We introduce a tree arrangement of the parametrized quantum gates, enabling the exact solution of arbitrary tree graphs using the one-round $i$HVA. For randomly generated $D$-regular graphs, we numerically demonstrate that the $i$HVA solves the MaxCut problem with a small constant number of rounds and sublinear depth, outperforming QAOA, which requires rounds increasing with the graph size. Furthermore, our ansatz solves MaxCut exactly for graphs with up to 24 nodes and $D \leq 5$, whereas only approximate solutions can be derived by the classical near-optimal Goemans-Williamson algorithm. We validate our simulated results with hardware experiments on a graph with 63 nodes.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Benchmarking a heuristic Floquet adiabatic algorithm for the Max-Cut problem [0.0]
We show that adiabatic evolution can be performed with a fixed, finite Trotter step.
We give numerical evidence using matrix-product-state simulations that it can optimally solve the Max-Cut problem.
Extrapolating our numerical results, we estimate the resources needed for a quantum computer to compete with classical exact or approximate solvers.
arXiv Detail & Related papers (2024-04-24T17:29:03Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - NISQ-compatible approximate quantum algorithm for unconstrained and
constrained discrete optimization [0.0]
We present an approximate gradient-based quantum algorithm for hardware-efficient circuits with amplitude encoding.
We show how simple linear constraints can be directly incorporated into the circuit without additional modification of the objective function with penalty terms.
arXiv Detail & Related papers (2023-05-23T16:17:57Z) - Solving various NP-Hard problems using exponentially fewer qubits on a
Quantum Computer [0.0]
NP-hard problems are not believed to be exactly solvable through general time algorithms.
In this paper, we build upon a proprietary methodology which logarithmically scales with problem size.
These algorithms are tested on a quantum simulator with graph sizes of over a hundred nodes and on a real quantum computer up to graph sizes of 256.
arXiv Detail & Related papers (2023-01-17T16:03:33Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - On Applying the Lackadaisical Quantum Walk Algorithm to Search for
Multiple Solutions on Grids [63.75363908696257]
The lackadaisical quantum walk is an algorithm developed to search graph structures whose vertices have a self-loop of weight $l$.
This paper addresses several issues related to applying the lackadaisical quantum walk to search for multiple solutions on grids successfully.
arXiv Detail & Related papers (2021-06-11T09:43:09Z) - Training variational quantum algorithms is NP-hard [0.7614628596146599]
We show that the corresponding classical optimization problems are NP-hard.
Even for classically tractable systems composed of only logarithmically many qubits or free fermions, we show the optimization to be NP-hard.
arXiv Detail & Related papers (2021-01-18T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.