Performance of Variational Algorithms for Local Hamiltonian Problems on Random Regular Graphs
- URL: http://arxiv.org/abs/2412.15147v1
- Date: Thu, 19 Dec 2024 18:27:39 GMT
- Title: Performance of Variational Algorithms for Local Hamiltonian Problems on Random Regular Graphs
- Authors: Kunal Marwaha, Adrian She, James Sud,
- Abstract summary: We design two variational algorithms to optimize specific 2-local Hamiltonians defined on graphs.
We develop formulae to analyze the energy achieved by these algorithms with high probability over random regular graphs in the infinite-size limit.
We show that with just five layers of our algorithm, we can already prepare states within 1.62% error of the ground state energy for QMC on an infinite 1D ring.
- Score: 0.13654846342364307
- License:
- Abstract: We design two variational algorithms to optimize specific 2-local Hamiltonians defined on graphs. Our algorithms are inspired by the Quantum Approximate Optimization Algorithm. We develop formulae to analyze the energy achieved by these algorithms with high probability over random regular graphs in the infinite-size limit, using techniques from [arXiv:2110.14206]. The complexity of evaluating these formulae scales exponentially with the number of layers of the algorithms, so our numerical evaluation is limited to a small constant number of layers. We compare these algorithms to simple classical approaches and a state-of-the-art worst-case algorithm. We find that the symmetry inherent to these specific variational algorithms presents a major \emph{obstacle} to successfully optimizing the Quantum MaxCut (QMC) Hamiltonian on general graphs. Nonetheless, the algorithms outperform known methods to optimize the EPR Hamiltonian of [arXiv:2209.02589] on random regular graphs, and the QMC Hamiltonian when the graphs are also bipartite. As a special case, we show that with just five layers of our algorithm, we can already prepare states within 1.62% error of the ground state energy for QMC on an infinite 1D ring, corresponding to the antiferromagnetic Heisenberg spin chain.
Related papers
- Imaginary Hamiltonian variational ansatz for combinatorial optimization problems [3.14105061893604]
We introduce a tree arrangement of the parametrized quantum gates, enabling the exact solution of arbitrary tree graphs using the one-round $i$HVA.
Our ansatz solves MaxCut exactly for graphs with up to 24 nodes and $D leq 5$, whereas only approximate solutions can be derived by the classical near-optimal Goemans-Williamson algorithm.
arXiv Detail & Related papers (2024-08-17T03:34:17Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Comparison among Classical, Probabilistic and Quantum Algorithms for
Hamiltonian Cycle problem [0.0]
Hamiltonian cycle problem (HCP) consists of having a graph G with n nodes and m edges and finding the path that connects each node exactly once.
In this paper we compare some algorithms to solve aHCP, using different models of computations and especially the probabilistic and quantum ones.
arXiv Detail & Related papers (2023-11-18T02:36:10Z) - Quantum Hamiltonian Algorithms for Maximum Independent Sets [6.772902928686719]
An alternative algorithm, short named the PK algorithm, reveals that the independent sets diffuse over a media graph governed by a non-abelian gauge matrix of an emergent PXP model.
Although the two are mathematically equivalent, the PK algorithm exhibits more efficient and resource-saving performance.
arXiv Detail & Related papers (2023-10-23T04:00:34Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - Faster quantum mixing of Markov chains in non-regular graph with fewer
qubits [0.0]
In quantum cases, qsampling from Markov chains can be constructed as preparing quantum states with amplitudes arbitrarily close to the square root of a stationary distribution.
In this paper, a new qsampling algorithm for all reversible Markov chains is constructed by discrete-time quantum walks.
In non-regular graphs, the invocation of the quantum fast-forward algorithm accelerates existing state-of-the-art qsampling algorithms for both discrete-time and continuous-time cases.
arXiv Detail & Related papers (2022-05-12T14:08:08Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Hybrid quantum-classical algorithms for approximate graph coloring [65.62256987706128]
We show how to apply the quantum approximate optimization algorithm (RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex coloring of a graph.
We construct an efficient classical simulation algorithm which simulates level-$1$ QAOA and level-$1$ RQAOA for arbitrary graphs.
arXiv Detail & Related papers (2020-11-26T18:22:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.