論文の概要: Time Series Analysis by State Space Learning
- arxiv url: http://arxiv.org/abs/2408.09120v1
- Date: Sat, 17 Aug 2024 07:04:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 22:37:12.381102
- Title: Time Series Analysis by State Space Learning
- Title(参考訳): 状態空間学習による時系列解析
- Authors: André Ramos, Davi Valladão, Alexandre Street,
- Abstract要約: 状態空間モデルによる時系列解析は、説明変数とともに、レベルスロープや季節性のような観測不可能なコンポーネントの予測と抽出に広く用いられている。
本研究は,統計的学習の能力を活用し,時系列モデリングと予測のための総合的なフレームワークを構築するための新しいフレームワークとパラダイムであるState Space Learning(SSL)を紹介する。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time series analysis by state-space models is widely used in forecasting and extracting unobservable components like level, slope, and seasonality, along with explanatory variables. However, their reliance on traditional Kalman filtering frequently hampers their effectiveness, primarily due to Gaussian assumptions and the absence of efficient subset selection methods to accommodate the multitude of potential explanatory variables in today's big-data applications. Our research introduces the State Space Learning (SSL), a novel framework and paradigm that leverages the capabilities of statistical learning to construct a comprehensive framework for time series modeling and forecasting. By utilizing a regularized high-dimensional regression framework, our approach jointly extracts typical time series unobservable components, detects and addresses outliers, and selects the influence of exogenous variables within a high-dimensional space in polynomial time and global optimality guarantees. Through a controlled numerical experiment, we demonstrate the superiority of our approach in terms of subset selection of explanatory variables accuracy compared to relevant benchmarks. We also present an intuitive forecasting scheme and showcase superior performances relative to traditional time series models using a dataset of 48,000 monthly time series from the M4 competition. We extend the applicability of our approach to reformulate any linear state space formulation featuring time-varying coefficients into high-dimensional regularized regressions, expanding the impact of our research to other engineering applications beyond time series analysis. Finally, our proposed methodology is implemented within the Julia open-source package, ``StateSpaceLearning.jl".
- Abstract(参考訳): 状態空間モデルによる時系列解析は、説明変数とともに、レベル、スロープ、季節といった観測不可能なコンポーネントを予測および抽出するために広く用いられている。
しかし、従来のカルマンフィルターへの依存は、主にガウス的な仮定と、今日のビッグデータアプリケーションにおける潜在的な説明変数の多さに対応する効率的な部分集合選択方法が欠如していることから、その効果をしばしば損なう。
本研究は,統計的学習の能力を活用し,時系列モデリングと予測のための総合的なフレームワークを構築するための新しいフレームワークとパラダイムであるState Space Learning(SSL)を紹介する。
正規化された高次元回帰フレームワークを利用することで、典型的な時系列の観測不可能な成分を共同で抽出し、外乱の検出と対処を行い、多項式時間と大域的最適性を保証する高次元空間における外因性変数の影響を選択する。
制御された数値実験により,説明変数の精度のサブセット選択における提案手法の優位性について,関連するベンチマークと比較した。
また、M4コンペティションの48,000の月次時系列データセットを用いて、直感的な予測手法を提示し、従来の時系列モデルと比較して優れた性能を示す。
時間変化係数を特徴とする線形状態空間の定式化を高次元正則化レグレッションに変換する手法の適用性を拡張し、時系列解析以外の他の工学的応用にも応用範囲を広げる。
最後に,提案手法は Julia オープンソースパッケージ ``StateSpaceLearning.jl に実装されている。
関連論文リスト
- Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings [0.0]
パティオ時間予測は輸送、物流、サプライチェーン管理において重要である。
本稿では,従来の予測手法の強みと小言語モデルの命令チューニングを融合した動的マルチモーダル手法を提案する。
我々のフレームワークは、推論速度とデータプライバシ/セキュリティを維持しながら、計算とメモリの要求を低減したオンプレミスのカスタマイズを可能にする。
論文 参考訳(メタデータ) (2024-08-24T16:32:58Z) - UniCL: A Universal Contrastive Learning Framework for Large Time Series Models [18.005358506435847]
時系列分析は、金融から医療まで、さまざまな重要なアプリケーションにおいて重要な役割を果たす。
従来の教師付き学習手法は、まず各タスクにおける時系列データの広範なラベルを注釈付けする。
本稿では,時系列基礎モデルの事前学習を目的とした,普遍的でスケーラブルなコントラスト学習フレームワークUniCLを紹介する。
論文 参考訳(メタデータ) (2024-05-17T07:47:11Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
複数の手法を評価し、それらの方法の1つを選択することや、最良の予測を生成するためのアンサンブルを選択するのが一般的である。
本稿では,低ランク時間行列係数化と潜在時系列上での最適モデル選択を組み合わせることで,短時間の高次元時系列データを予測するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:39:21Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Time Series Forecasting Using Manifold Learning [6.316185724124034]
本研究では,高次元時系列の予測のための多様体学習に基づく3層数値フレームワークを提案する。
最初のステップでは、非線形多様体学習アルゴリズムを用いて、時系列を低次元空間に埋め込む。
2番目のステップでは、埋め込み力学を予測するために、多様体上の低次回帰モデルを構築する。
最後のステップでは、埋め込み時系列を元の高次元空間に戻します。
論文 参考訳(メタデータ) (2021-10-07T17:09:59Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
時系列予測は科学的・工学的な問題の基本である。
深層学習法はこの問題に適している。
多くの実世界のデータセットにおける標準メトリクスの最先端よりも改善されていることを示す。
論文 参考訳(メタデータ) (2020-02-14T16:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。