Point Source Identification Using Singularity Enriched Neural Networks
- URL: http://arxiv.org/abs/2408.09143v1
- Date: Sat, 17 Aug 2024 08:51:18 GMT
- Title: Point Source Identification Using Singularity Enriched Neural Networks
- Authors: Tianhao Hu, Bangti Jin, Zhi Zhou,
- Abstract summary: We develop a novel algorithm to identify point sources, utilizing a neural network combined with a singularity enrichment technique.
We demonstrate the effectiveness of the method with several challenging experiments.
- Score: 4.228167013618626
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The inverse problem of recovering point sources represents an important class of applied inverse problems. However, there is still a lack of neural network-based methods for point source identification, mainly due to the inherent solution singularity. In this work, we develop a novel algorithm to identify point sources, utilizing a neural network combined with a singularity enrichment technique. We employ the fundamental solution and neural networks to represent the singular and regular parts, respectively, and then minimize an empirical loss involving the intensities and locations of the unknown point sources, as well as the parameters of the neural network. Moreover, by combining the conditional stability argument of the inverse problem with the generalization error of the empirical loss, we conduct a rigorous error analysis of the algorithm. We demonstrate the effectiveness of the method with several challenging experiments.
Related papers
- About rectified sigmoid function for enhancing the accuracy of Physics-Informed Neural Networks [0.0]
A rectified sigmoid activation function has been proposed to solve physical problems described by the ODE with neural networks.
Numerical experiments demonstrate the superiority of neural networks with a rectified sigmoid function over neural networks with a sigmoid function.
arXiv Detail & Related papers (2024-12-30T10:42:28Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Cycle Consistency-based Uncertainty Quantification of Neural Networks in
Inverse Imaging Problems [10.992084413881592]
Uncertainty estimation is critical for numerous applications of deep neural networks.
We show an uncertainty quantification approach for deep neural networks used in inverse problems based on cycle consistency.
arXiv Detail & Related papers (2023-05-22T09:23:18Z) - To be or not to be stable, that is the question: understanding neural
networks for inverse problems [0.0]
In this paper, we theoretically analyze the trade-off between stability and accuracy of neural networks.
We propose different supervised and unsupervised solutions to increase the network stability and maintain a good accuracy.
arXiv Detail & Related papers (2022-11-24T16:16:40Z) - Stable, accurate and efficient deep neural networks for inverse problems
with analysis-sparse models [2.969705152497174]
We present a novel construction of an accurate, stable and efficient neural network for inverse problems with general analysis-sparse models.
To construct the network, we unroll NESTA, an accelerated first-order method for convex optimization.
A restart scheme is employed to enable exponential decay of the required network depth, yielding a shallower, and consequently more efficient, network.
arXiv Detail & Related papers (2022-03-02T00:44:25Z) - Physics-Informed Neural Networks for Quantum Eigenvalue Problems [1.2891210250935146]
Eigenvalue problems are critical to several fields of science and engineering.
We use unsupervised neural networks for discovering eigenfunctions and eigenvalues for differential eigenvalue problems.
The network optimization is data-free and depends solely on the predictions of the neural network.
arXiv Detail & Related papers (2022-02-24T18:29:39Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Multivariate Deep Evidential Regression [77.34726150561087]
A new approach with uncertainty-aware neural networks shows promise over traditional deterministic methods.
We discuss three issues with a proposed solution to extract aleatoric and epistemic uncertainties from regression-based neural networks.
arXiv Detail & Related papers (2021-04-13T12:20:18Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Supervised learning in Hamiltonian reconstruction from local
measurements on eigenstates [0.45880283710344055]
Reconstructing a system Hamiltonian through measurements on its eigenstates is an important inverse problem in quantum physics.
In this work, we discuss this problem in more depth and apply the supervised learning method via neural networks to solve it.
arXiv Detail & Related papers (2020-07-12T11:37:17Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.