EagleEye: Attention to Unveil Malicious Event Sequences from Provenance Graphs
- URL: http://arxiv.org/abs/2408.09217v2
- Date: Mon, 2 Sep 2024 06:07:06 GMT
- Title: EagleEye: Attention to Unveil Malicious Event Sequences from Provenance Graphs
- Authors: Philipp Gysel, Candid Wüest, Kenneth Nwafor, Otakar Jašek, Andrey Ustyuzhanin, Dinil Mon Divakaran,
- Abstract summary: Securing endpoints is challenging due to the evolving nature of threats and attacks.
With endpoint logging systems becoming mature, provenance-graph representations enable the creation of sophisticated behavior rules.
We develop and present EagleEye, a novel system that uses rich features from provenance graphs for behavior event representation.
- Score: 1.3359586871482305
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Securing endpoints is challenging due to the evolving nature of threats and attacks. With endpoint logging systems becoming mature, provenance-graph representations enable the creation of sophisticated behavior rules. However, adapting to the pace of emerging attacks is not scalable with rules. This led to the development of ML models capable of learning from endpoint logs. However, there are still open challenges: i) malicious patterns of malware are spread across long sequences of events, and ii) ML classification results are not interpretable. To address these issues, we develop and present EagleEye, a novel system that i) uses rich features from provenance graphs for behavior event representation, including command-line embeddings, ii) extracts long sequences of events and learns event embeddings, and iii) trains a lightweight Transformer model to classify behavior sequences as malicious or not. We evaluate and compare EagleEye against state-of-the-art baselines on two datasets, namely a new real-world dataset from a corporate environment, and the public DARPA dataset. On the DARPA dataset, at a false-positive rate of 1%, EagleEye detects $\approx$89% of all malicious behavior, outperforming two state-of-the-art solutions by an absolute margin of 38.5%. Furthermore, we show that the Transformer's attention mechanism can be leveraged to highlight the most suspicious events in a long sequence, thereby providing interpretation of malware alerts.
Related papers
- METANOIA: A Lifelong Intrusion Detection and Investigation System for Mitigating Concept Drift [6.988127333802916]
We present METANOIA, the first lifelong detection system that mitigates the high false positives due to concept drift.
Using state-of-the-art benchmarks, we demonstrate that METANOIA improves precision performance at the window-level, graph-level, and node-level by 30%, 54%, and 29%, respectively.
arXiv Detail & Related papers (2024-12-31T13:44:27Z) - PARIS: A Practical, Adaptive Trace-Fetching and Real-Time Malicious Behavior Detection System [6.068607290592521]
We propose adaptive trace fetching, lightweight, real-time malicious behavior detection system.
Specifically, we monitor malicious behavior with Event Tracing for Windows (ETW) and learn to selectively collect maliciousness-related APIs or call stacks.
As a result, we can monitor a wider range of APIs and detect more intricate attack behavior.
arXiv Detail & Related papers (2024-11-02T14:52:04Z) - ORCHID: Streaming Threat Detection over Versioned Provenance Graphs [11.783370157959968]
We present ORCHID, a novel Prov-IDS that performs fine-grained detection of process-level threats over a real time event stream.
ORCHID takes advantage of the unique immutable properties of a versioned provenance graphs to iteratively embed the entire graph in a sequential RNN model.
We evaluate ORCHID on four public datasets, including DARPA TC, to show that ORCHID can provide competitive classification performance.
arXiv Detail & Related papers (2024-08-23T19:44:40Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority.
We propose a novel few-shot Graph Anomaly Detection model called FMGAD.
We show that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.
arXiv Detail & Related papers (2023-11-17T07:49:20Z) - Combating Bilateral Edge Noise for Robust Link Prediction [56.43882298843564]
We propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse.
Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies.
Experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations.
arXiv Detail & Related papers (2023-11-02T12:47:49Z) - GADY: Unsupervised Anomaly Detection on Dynamic Graphs [18.1896489628884]
We propose a continuous dynamic graph model to capture the fine-grained information, which breaks the limit of existing discrete methods.
For the second challenge, we pioneer the use of Generative Adversarial Networks to generate negative interactions.
Our proposed GADY significantly outperforms the previous state-of-the-art method on three real-world datasets.
arXiv Detail & Related papers (2023-10-25T05:27:45Z) - Prov2vec: Learning Provenance Graph Representation for Unsupervised APT Detection [2.07180164747172]
It is necessary to detect Advanced Persistent Threats as early in the campaign as possible.
This paper proposes, Prov2Vec, a system for the continuous monitoring of enterprise host's behavior to detect attackers' activities.
arXiv Detail & Related papers (2023-10-02T01:38:13Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
We improve the challenging monocular 3D object detection problem with a general semi-supervised framework.
We introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data.
The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI.
arXiv Detail & Related papers (2023-03-20T16:28:15Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.