論文の概要: An Open-Source American Sign Language Fingerspell Recognition and Semantic Pose Retrieval Interface
- arxiv url: http://arxiv.org/abs/2408.09311v1
- Date: Sat, 17 Aug 2024 23:59:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 21:19:42.103991
- Title: An Open-Source American Sign Language Fingerspell Recognition and Semantic Pose Retrieval Interface
- Title(参考訳): オープンソースのアメリカ手話フィンガーペル認識とセマンティック詩検索インタフェース
- Authors: Kevin Jose Thomas,
- Abstract要約: 本稿では,アメリカ手話の指先認識とセマンティックポーズ検索のためのオープンソースインタフェースを提案する。
我々は、モデルアーキテクチャの技術的な詳細、ワイルドなアプリケーション、および現実世界の消費者アプリケーションの将来的な拡張について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an open-source interface for American Sign Language fingerspell recognition and semantic pose retrieval, aimed to serve as a stepping stone towards more advanced sign language translation systems. Utilizing a combination of convolutional neural networks and pose estimation models, the interface provides two modular components: a recognition module for translating ASL fingerspelling into spoken English and a production module for converting spoken English into ASL pose sequences. The system is designed to be highly accessible, user-friendly, and capable of functioning in real-time under varying environmental conditions like backgrounds, lighting, skin tones, and hand sizes. We discuss the technical details of the model architecture, application in the wild, as well as potential future enhancements for real-world consumer applications.
- Abstract(参考訳): 本稿では,より先進的な手話翻訳システムへのステップストーンとして機能することを目的とした,アメリカ手話指先認識とセマンティックポーズ検索のためのオープンソースインタフェースを提案する。
畳み込みニューラルネットワークとポーズ推定モデルを組み合わせることで、このインタフェースは2つのモジュラーコンポーネントを提供する。
システムはアクセシビリティが高く、ユーザフレンドリで、背景、照明、肌のトーン、手の大きさなど様々な環境条件下でリアルタイムで機能するように設計されている。
我々は、モデルアーキテクチャの技術的な詳細、ワイルドなアプリケーション、および現実世界の消費者アプリケーションの将来的な拡張について論じる。
関連論文リスト
- Generating Signed Language Instructions in Large-Scale Dialogue Systems [25.585339304165466]
我々は、アメリカン手話(ASL)命令で強化された目標指向対話型AIシステムを導入する。
本システムは,ユーザからの入力を受信し,検索手法と認知に基づく光沢変換を活用して,ASL命令をシームレスに生成する。
論文 参考訳(メタデータ) (2024-10-17T20:56:29Z) - Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition [110.8431434620642]
生成音声の書き起こし誤り訂正(GenSEC)の課題について紹介する。
この課題は、(i)ASR後の転写補正、(ii)話者タグ付け、(iii)感情認識という、3つのASR後の言語モデリングタスクを含む。
本稿では,ベースライン評価から得られた知見と,今後の評価設計における教訓について論じる。
論文 参考訳(メタデータ) (2024-09-15T16:32:49Z) - Deep Neural Network-Based Sign Language Recognition: A Comprehensive Approach Using Transfer Learning with Explainability [0.0]
我々は、ディープニューラルネットワークを使って手話認識を完全に自動化する新しいソリューションを提案する。
この手法は、高度な前処理方法論を統合し、全体的なパフォーマンスを最適化する。
SHAP (SHapley Additive exPlanations) 法を用いて, 情報的明瞭度の提供能力を評価した。
論文 参考訳(メタデータ) (2024-09-11T17:17:44Z) - CMULAB: An Open-Source Framework for Training and Deployment of Natural Language Processing Models [59.91221728187576]
本稿では,NLPモデルのモデル展開と連続的なヒューマン・イン・ザ・ループの微調整を簡単にするオープンソースフレームワークであるCMU言語バックエンドを紹介する。
CMULABは、マルチ言語モデルのパワーを活用して、音声認識、OCR、翻訳、構文解析などの既存のツールを新しい言語に迅速に適応し、拡張することができる。
論文 参考訳(メタデータ) (2024-04-03T02:21:46Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Bidirectional Representations for Low Resource Spoken Language
Understanding [39.208462511430554]
双方向リッチ符号化における音声符号化のための表現モデルを提案する。
このアプローチでは、表現を学習するために、マスク付き言語モデリングの目的を使用する。
得られたエンコーディングの性能は、複数のデータセットで比較できるモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-11-24T17:05:16Z) - ABINet++: Autonomous, Bidirectional and Iterative Language Modeling for
Scene Text Spotting [121.11880210592497]
言語モデルの限られた能力は,1)暗黙的な言語モデリング,2)一方向の特徴表現,3)雑音入力を伴う言語モデルから生じる。
シーンテキストスポッティングのための自律的で双方向かつ反復的なABINet++を提案する。
論文 参考訳(メタデータ) (2022-11-19T03:50:33Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
本稿では,様々な基礎モデルに対する汎用インタフェースとして言語モデルを提案する。
事前訓練されたエンコーダのコレクションは、様々なモダリティ(ビジョンや言語など)を知覚する
インタフェースとモジュールエンコーダを協調的に事前学習するための半因果言語モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-06-13T17:34:22Z) - Signing at Scale: Learning to Co-Articulate Signs for Large-Scale
Photo-Realistic Sign Language Production [43.45785951443149]
手話は視覚言語であり、語彙は話し言葉と同じくらい豊かである。
現在の深層学習に基づく手話生成(SLP)モデルでは、アンダーアーティキュレートされたスケルトンポーズシーケンスが生成される。
我々は,辞書記号間の協調処理を学習することで,大規模SLPに取り組む。
また,ポーズ条件付き人間の合成モデルであるSignGANを提案する。
論文 参考訳(メタデータ) (2022-03-29T08:51:38Z) - Language Model-Based Paired Variational Autoencoders for Robotic Language Learning [18.851256771007748]
人間の幼児と同様、人工エージェントは環境と対話しながら言語を学ぶことができる。
本稿では,ロボットの動作と言語記述を双方向に結合するニューラルモデルを提案する。
次に, PVAE-BERTを導入し, 事前訓練された大規模言語モデルとモデルを同調する。
論文 参考訳(メタデータ) (2022-01-17T10:05:26Z) - Multi-Modal Zero-Shot Sign Language Recognition [51.07720650677784]
マルチモーダルなゼロショット手話認識モデルを提案する。
C3DモデルとともにTransformerベースのモデルを使用して手の検出と深い特徴抽出を行う。
意味空間は、視覚的特徴をクラスラベルの言語的な埋め込みにマッピングするために使用される。
論文 参考訳(メタデータ) (2021-09-02T09:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。