論文の概要: Game Development as Human-LLM Interaction
- arxiv url: http://arxiv.org/abs/2408.09386v2
- Date: Mon, 16 Dec 2024 06:58:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:52:17.333936
- Title: Game Development as Human-LLM Interaction
- Title(参考訳): 人間-LLMインタラクションとしてのゲーム開発
- Authors: Jiale Hong, Hongqiu Wu, Hai Zhao,
- Abstract要約: 本稿では,Human-LLMインタラクションを利用したChat Game Engine(ChatGE)を紹介する。
ChatGEは、Human-LLMインタラクションを通じて、自然言語を使ってカスタムゲームを開発することができる。
ポーカーゲームのためのChatGEをケーススタディとして構築し、インタラクションの品質とコードの正確性という2つの観点から評価する。
- 参考スコア(独自算出の注目度): 55.03293214439741
- License:
- Abstract: Game development is a highly specialized task that relies on a complex game engine powered by complex programming languages, preventing many gaming enthusiasts from handling it. This paper introduces the Chat Game Engine (ChatGE) powered by LLM, which allows everyone to develop a custom game using natural language through Human-LLM interaction. To enable an LLM to function as a ChatGE, we instruct it to perform the following processes in each turn: (1) $P_{script}$: configure the game script segment based on the user's input; (2) $P_{code}$: generate the corresponding code snippet based on the game script segment; (3) $P_{utter}$: interact with the user, including guidance and feedback. We propose a data synthesis pipeline based on LLM to generate game script-code pairs and interactions from a few manually crafted seed data. We propose a three-stage progressive training strategy to transfer the dialogue-based LLM to our ChatGE smoothly. We construct a ChatGE for poker games as a case study and comprehensively evaluate it from two perspectives: interaction quality and code correctness.
- Abstract(参考訳): ゲーム開発は複雑なプログラミング言語を動力とする複雑なゲームエンジンに依存する非常に特殊なタスクであり、多くのゲーム愛好家がそれを扱うのを妨げている。
本稿では,LLMを利用したChat Game Engine(ChatGE)を紹介する。
1)$P_{script}$:ユーザの入力に基づいてゲームスクリプトセグメントを設定し、(2)$P_{code}$:ゲームスクリプトセグメントに基づいて対応するコードスニペットを生成し、(3)$P_{utter}$:ガイダンスやフィードバックを含むユーザと対話する。
LLMに基づくデータ合成パイプラインを提案し、手作業によるシードデータからゲームスクリプトとコードペアとインタラクションを生成する。
対話型LLMをChatGEにスムーズに転送するための3段階のプログレッシブトレーニング戦略を提案する。
ポーカーゲームのためのChatGEをケーススタディとして構築し,インタラクションの品質とコードの正確性という2つの観点から総合的に評価する。
関連論文リスト
- LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
本研究では,人間とチャットボットの対話をシミュレートする多元多元対話を自動生成する,目標指向のペルソナに基づく手法を提案する。
本手法は,人間とチャットボットの対話を高い相違率でシミュレートすることができる。
論文 参考訳(メタデータ) (2024-07-04T14:49:46Z) - A Dialogue Game for Eliciting Balanced Collaboration [64.61707514432533]
本稿では、プレイヤーがゴール状態自体を交渉しなければならない2Dオブジェクト配置ゲームを提案する。
我々は,人間プレイヤーが様々な役割を担っていることを実証的に示し,バランスの取れた協調によってタスクのパフォーマンスが向上することを示した。
論文 参考訳(メタデータ) (2024-06-12T13:35:10Z) - Bootstrapping LLM-based Task-Oriented Dialogue Agents via Self-Talk [11.706292228586332]
大規模言語モデル(LLM)は強力な対話エージェントであるが、特定の機能の実現に特化することは困難である。
本稿では,様々な役割における会話に係わるLLMを通して,より効果的なデータ収集手法を提案する。
このアプローチはLLMの“セルフトーク”を通じてトレーニングデータを生成し,教師付き微調整に利用することができる。
論文 参考訳(メタデータ) (2024-01-10T09:49:10Z) - Let the LLMs Talk: Simulating Human-to-Human Conversational QA via
Zero-Shot LLM-to-LLM Interactions [19.365615476223635]
対話型質問応答システムの目的は,ユーザとの対話によって情報を取得する対話型検索システムを作ることである。
既存の作業では、人間の注釈を使って質問者(学生)と回答者(教師)の役割を演じる。
教師と学生のインタラクションをシミュレーションするためにゼロショット学習者LLMを用いたシミュレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-05T17:38:02Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
大規模言語モデル(LLM)は、多くの自然言語タスクに対する強力で一般的な解決策として登場した。
しかしながら、言語生成の最も重要なアプリケーションの多くは対話的であり、エージェントは望ましい結果に達するために相手と話し合わなければならない。
本研究では,そのような目標指向対話に対して,RLでLLMを適応させる新しい手法について検討する。
論文 参考訳(メタデータ) (2023-11-09T18:45:16Z) - Clembench: Using Game Play to Evaluate Chat-Optimized Language Models as
Conversational Agents [20.202525145391093]
近年の研究では,「言語理解エージェント」の体系的評価手法が提案されている。
制約のあるゲームライクな設定に公開することで、大規模言語モデルを有意義に評価できるだろうか?
概念実証として,現在のチャット最適化LDMがゲームプレイの指示に従うことができる範囲において,5つのインタラクション設定について検討する。
論文 参考訳(メタデータ) (2023-05-22T19:56:10Z) - AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking
Head [82.69233563811487]
大規模言語モデル(LLM)は、さまざまな領域やタスクにまたがって顕著な能力を示し、学習と認知の理解に挑戦しています。
本稿では,LLMを基本モデルで補完し,複雑な音声情報を処理するマルチモーダルAIシステムであるAudioGPTを提案する。
論文 参考訳(メタデータ) (2023-04-25T17:05:38Z) - A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on
Reasoning, Hallucination, and Interactivity [79.12003701981092]
8種類の共通NLPアプリケーションタスクをカバーする23のデータセットを用いてChatGPTの広範な技術的評価を行う。
これらのデータセットと、新たに設計されたマルチモーダルデータセットに基づいて、ChatGPTのマルチタスク、マルチリンガル、マルチモーダルの側面を評価する。
ChatGPTの精度は平均63.41%で、論理的推論、非テキスト的推論、コモンセンス推論の10の異なる推論カテゴリで正確である。
論文 参考訳(メタデータ) (2023-02-08T12:35:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。