論文の概要: PANGeA: Procedural Artificial Narrative using Generative AI for Turn-Based Video Games
- arxiv url: http://arxiv.org/abs/2404.19721v3
- Date: Tue, 9 Jul 2024 23:45:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 21:10:19.215857
- Title: PANGeA: Procedural Artificial Narrative using Generative AI for Turn-Based Video Games
- Title(参考訳): PANGeA: ターン型ビデオゲームのための生成AIを用いた手続き型人工物語
- Authors: Steph Buongiorno, Lawrence Jake Klinkert, Tanishq Chawla, Zixin Zhuang, Corey Clark,
- Abstract要約: 本研究は、生成AI(PANGeA)を用いた手続き型人工語りについて紹介する。
PANGeAは大規模言語モデル(LLM)を利用してターン型ロールプレイングビデオゲーム(RPG)の物語コンテンツを生成する構造的アプローチである。
PANGeAが生成するNPCは人格バイアスを受けており、生成した応答においてBig 5 Personality Modelの特徴を表現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research introduces Procedural Artificial Narrative using Generative AI (PANGeA), a structured approach for leveraging large language models (LLMs), guided by a game designer's high-level criteria, to generate narrative content for turn-based role-playing video games (RPGs). Distinct from prior applications of LLMs used for video game design, PANGeA innovates by not only generating game level data (which includes, but is not limited to, setting, key items, and non-playable characters (NPCs)), but by also fostering dynamic, free-form interactions between the player and the environment that align with the procedural game narrative. The NPCs generated by PANGeA are personality-biased and express traits from the Big 5 Personality Model in their generated responses. PANGeA addresses challenges behind ingesting free-form text input, which can prompt LLM responses beyond the scope of the game narrative. A novel validation system that uses the LLM's intelligence evaluates text input and aligns generated responses with the unfolding narrative. Making these interactions possible, PANGeA is supported by a server that hosts a custom memory system that supplies context for augmenting generated responses thus aligning them with the procedural narrative. For its broad application, the server has a REST interface enabling any game engine to integrate directly with PANGeA, as well as an LLM interface adaptable with local or private LLMs. PANGeA's ability to foster dynamic narrative generation by aligning responses with the procedural narrative is demonstrated through an empirical study and ablation test of two versions of a demo game. These are, a custom, browser-based GPT and a Unity demo. As the results show, PANGeA holds potential to assist game designers in using LLMs to generate narrative-consistent content even when provided varied and unpredictable, free-form text input.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)を活用するための構造化アプローチであるPANGeA(Procedural Artificial Narrative Using Generative AI)を紹介した。
ゲームデザインに使用されるLLMの以前の応用とは違って、PANGeAはゲームレベルデータ(設定、キーアイテム、非プレイ可能な文字(NPC)を含むものではない)を生成するだけでなく、プレイヤーとプロシージャゲーム物語に沿った環境との間の動的で自由な相互作用を育むことで革新する。
PANGeAが生成するNPCは人格バイアスを受けており、生成した応答においてBig 5 Personality Modelの特徴を表現している。
PANGeAは、ゲームナラティブの範囲を超えてLSM応答を促せる自由形式のテキスト入力の取り込みの背景にある課題に対処する。
LLMのインテリジェンスを利用した新しいバリデーションシステムは,テキスト入力を評価し,生成した応答を展開物語と整合させる。
これらのインタラクションを可能にするために、PANGeAは、生成されたレスポンスを拡張するためのコンテキストを提供するカスタムメモリシステムをホストするサーバによってサポートされ、手続き的な物語と整合する。
幅広いアプリケーションのために、サーバにはRESTインターフェースがあり、任意のゲームエンジンがPANGeAと直接統合できる。
2種類のデモゲームの実証実験とアブレーションテストにより, PANGeAの動的物語生成をプロシージャ物語に整合させることで, 動的物語生成を促進できることを示す。
これらは、ブラウザベースのカスタムGPTとUnityのデモだ。
結果が示すように、PANGeAは、可変かつ予測不能な自由形式のテキスト入力が提供された場合でも、ゲームデザイナーがLSMを使用して物語に一貫性のあるコンテンツを生成するのを支援する可能性がある。
関連論文リスト
- Understanding Players as if They Are Talking to the Game in a Customized Language: A Pilot Study [3.4333699338998693]
本研究は,ゲームイベントシーケンスのモデル化における言語モデル(LM)の適用について検討する。
生イベントデータをテキストシーケンスに変換し、このデータ上でLongformerモデルを事前学習する。
これらの結果から,ゲームデザインやパーソナライズにおける自己監督型LMの可能性を示す。
論文 参考訳(メタデータ) (2024-10-24T09:59:10Z) - Game Development as Human-LLM Interaction [55.03293214439741]
本稿では,人間-LLMインタラクションを利用したインタラクション駆動型ゲームエンジン(IGE)について紹介する。
ポーカーゲームのための IGE をケーススタディとして構築し,インタラクションの品質とコードの正確性という2つの観点から評価する。
論文 参考訳(メタデータ) (2024-08-18T07:06:57Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
視覚言語モデル(VLM)は、状態情報を視覚的テキストのプロンプトとして処理し、テキスト内のポリシー決定に応答することができる。
LLaRA:Large Language and Robotics Assistantは,ロボットの行動ポリシーを会話として定式化するフレームワークである。
論文 参考訳(メタデータ) (2024-06-28T17:59:12Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
本稿では、パーソナリティを指標としたデータを用いて、ロールプレイング言語モデル(RPLM)を強化することを提案する。
具体的には、心理学的尺度からの質問を活用し、高度なRPAを蒸留し、文字の心を把握した対話を生成する。
実験により,本データセットを用いてトレーニングしたRPLMは,一般人格関連評価と人格関連評価の両面において,高度なロールプレイング能力を示した。
論文 参考訳(メタデータ) (2024-06-27T06:24:00Z) - Crafting Customisable Characters with LLMs: Introducing SimsChat, a Persona-Driven Role-Playing Agent Framework [29.166067413153353]
大きな言語モデル(LLM)は人間の指示を理解し、高品質なテキストを生成する。
LLMを利用して実世界のキャラクターをシミュレートするCustomisable Conversation Agent Frameworkを導入する。
我々は、自由にカスタマイズ可能なロールプレイングエージェントであるSimsChatを紹介する。
論文 参考訳(メタデータ) (2024-06-25T22:44:17Z) - Hidden in Plain Sight: Exploring Chat History Tampering in Interactive Language Models [12.920884182101142]
大規模言語モデル(LLM)は、実世界のアプリケーションで普及し、素晴らしいテキスト生成性能を示している。
LLMベースのチャットシステムは、対話的に振る舞うためには、事前に定義された構造に従って、事前のチャット履歴を入力のコンテキストとして統合する必要がある。
本稿では,目標モデルの事前知識を必要とせずに,LLM会話にユーザ提供履歴を注入するための体系的手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T16:36:47Z) - StoryVerse: Towards Co-authoring Dynamic Plot with LLM-based Character Simulation via Narrative Planning [8.851718319632973]
大きな言語モデル(LLM)は仮想文字の振る舞いを駆動し、プロットは文字と環境間の相互作用から現れる。
著者の著作意図と LLM によるキャラクタシミュレーションの創発的行動とを仲介するプロット作成ワークフローを提案する。
このプロセスは「生きた物語」を作り、様々なゲーム世界の状態に動的に適応し、著者、キャラクターシミュレーション、プレイヤーが共同で物語を作る。
論文 参考訳(メタデータ) (2024-05-17T23:04:51Z) - GENEVA: GENErating and Visualizing branching narratives using LLMs [15.43734266732214]
textbfGENEVAはプロトタイプツールで、ストーリーラインの分岐と再収束を伴うリッチな物語グラフを生成する。
textbfGENEVAはゲーム開発、シミュレーション、その他のゲームライクな特性を持つアプリケーションを支援する可能性がある。
論文 参考訳(メタデータ) (2023-11-15T18:55:45Z) - BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs [101.50522135049198]
BuboGPTはマルチモーダルなLLMで、視覚、音声、言語間の相互対話を行うことができる。
1)文中のエンティティを抽出し、画像中の対応するマスクを見つけるSAMに基づく、市販のビジュアルグラウンドモジュール。
実験の結果,BuboGPTは人間との相互作用において,印象的なマルチモーダル理解と視覚的接地能力を実現することがわかった。
論文 参考訳(メタデータ) (2023-07-17T15:51:47Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。