論文の概要: Towards Boosting LLMs-driven Relevance Modeling with Progressive Retrieved Behavior-augmented Prompting
- arxiv url: http://arxiv.org/abs/2408.09439v2
- Date: Fri, 06 Dec 2024 12:09:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:53:59.275714
- Title: Towards Boosting LLMs-driven Relevance Modeling with Progressive Retrieved Behavior-augmented Prompting
- Title(参考訳): プログレッシブ・リトリーブ・ビヘイビア強化型プロンプティングによるLLM関連性モデリングの強化に向けて
- Authors: Zeyuan Chen, Haiyan Wu, Kaixin Wu, Wei Chen, Mingjie Zhong, Jia Xu, Zhongyi Liu, Wei Zhang,
- Abstract要約: 本研究では,検索ログに記録されたユーザインタラクションを活用して,ユーザの暗黙の検索意図に対する洞察を得ることを提案する。
ProRBPは,探索シナリオ指向の知識を大規模言語モデルと統合するための,プログレッシブ検索行動拡張型プロンプトフレームワークである。
- 参考スコア(独自算出の注目度): 23.61061000692023
- License:
- Abstract: Relevance modeling is a critical component for enhancing user experience in search engines, with the primary objective of identifying items that align with users' queries. Traditional models only rely on the semantic congruence between queries and items to ascertain relevance. However, this approach represents merely one aspect of the relevance judgement, and is insufficient in isolation. Even powerful Large Language Models (LLMs) still cannot accurately judge the relevance of a query and an item from a semantic perspective. To augment LLMs-driven relevance modeling, this study proposes leveraging user interactions recorded in search logs to yield insights into users' implicit search intentions. The challenge lies in the effective prompting of LLMs to capture dynamic search intentions, which poses several obstacles in real-world relevance scenarios, i.e., the absence of domain-specific knowledge, the inadequacy of an isolated prompt, and the prohibitive costs associated with deploying LLMs. In response, we propose ProRBP, a novel Progressive Retrieved Behavior-augmented Prompting framework for integrating search scenario-oriented knowledge with LLMs effectively. Specifically, we perform the user-driven behavior neighbors retrieval from the daily search logs to obtain domain-specific knowledge in time, retrieving candidates that users consider to meet their expectations. Then, we guide LLMs for relevance modeling by employing advanced prompting techniques that progressively improve the outputs of the LLMs, followed by a progressive aggregation with comprehensive consideration of diverse aspects. For online serving, we have developed an industrial application framework tailored for the deployment of LLMs in relevance modeling. Experiments on real-world industry data and online A/B testing demonstrate our proposal achieves promising performance.
- Abstract(参考訳): 関連モデリングは,検索エンジンのユーザエクスペリエンスを高める上で重要な要素であり,ユーザのクエリに適合する項目を特定することが主な目的である。
従来のモデルは、関連性を確認するためにクエリとアイテム間のセマンティックな一致にのみ依存する。
しかし、このアプローチは単に関連性判断の1つの側面を表しており、単独では不十分である。
強力な大規模言語モデル(LLM)でさえ、セマンティックの観点からクエリとアイテムの関連性を正確に判断することはできない。
検索ログに記録されたユーザインタラクションを活用して,ユーザの暗黙的な検索意図に対する洞察を得る。
この課題は、LLMが動的検索意図を捕捉するための効果的なプロンプトであり、これは現実の関連シナリオ、すなわちドメイン固有の知識の欠如、孤立したプロンプトの欠如、LLMの展開に伴う禁止的なコストなど、いくつかの障害を引き起こす。
提案するProRBPは,探索シナリオ指向の知識をLLMに効果的に統合するための,新しいプログレッシブ・リトリビュード・ビヘイビア強化・プロンプティング・フレームワークである。
具体的には、日々の検索ログからユーザ主導の行動検索を行い、ドメイン固有の知識を時間内に取得し、ユーザが期待する候補を検索する。
次に,LLMの出力を漸進的に改善する高度なプロンプト技術を採用し,多様な側面を包括的に考慮した漸進的な集約手法を用いて,関連モデリングのためのLCMを導出する。
オンラインサービスのために,我々は,関連モデリングにおけるLLMの展開に適した産業用アプリケーションフレームワークを開発した。
実業界データとオンラインA/Bテストの実験は、我々の提案が有望なパフォーマンスを達成することを実証している。
関連論文リスト
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
本研究では,ユーザの興味を2つのレベル – 行動と意味論 – でモデル化する,明示的で暗黙的な多目的学習フレームワークを提案する。
提案するEIMFフレームワークは,小型モデルとLLMを効果的に組み合わせ,多目的モデリングの精度を向上させる。
論文 参考訳(メタデータ) (2024-11-14T13:00:23Z) - Towards Enhancing Linked Data Retrieval in Conversational UIs using Large Language Models [1.3980986259786221]
本稿では,既存のシステムにおけるLarge Language Models(LLM)の統合について検討する。
LLMの高度な自然言語理解機能を活用することで、Webシステム内のRDFエンティティ抽出を改善する。
本手法の評価は,ユーザクエリに対するシステム表現性と応答精度の顕著な向上を示す。
論文 参考訳(メタデータ) (2024-09-24T16:31:33Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Elicitron: An LLM Agent-Based Simulation Framework for Design Requirements Elicitation [38.98478510165569]
本稿では,Large Language Models (LLMs) を利用した新たなフレームワークを提案する。
LLMは多数のシミュレーションユーザ(LLMエージェント)を生成するために使用され、より広い範囲のユーザニーズの探索を可能にする。
論文 参考訳(メタデータ) (2024-04-04T17:36:29Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
LLM(Large Language Models)は、人間に似たテキストの理解と生成に優れた言語モデルである。
本稿では,言語モデル(LLM)と情報検索(IR)システムの統合戦略について検討する。
論文 参考訳(メタデータ) (2023-11-21T02:01:01Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - Beyond Semantics: Learning a Behavior Augmented Relevance Model with
Self-supervised Learning [25.356999988217325]
関連モデリングは、対応するクエリに対して望ましい項目を見つけることを目的としている。
ユーザの履歴行動データから抽出された補助的なクエリ-イテム相互作用は、ユーザの検索意図をさらに明らかにするためのヒントを提供する可能性がある。
本モデルでは, 隣接する視点と対象視点の両方から, 粗粒度および細粒度の意味表現を蒸留するための多レベルコアテンションを構築している。
論文 参考訳(メタデータ) (2023-08-10T06:52:53Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。