Perturb-and-Compare Approach for Detecting Out-of-Distribution Samples in Constrained Access Environments
- URL: http://arxiv.org/abs/2408.10107v1
- Date: Mon, 19 Aug 2024 15:51:31 GMT
- Title: Perturb-and-Compare Approach for Detecting Out-of-Distribution Samples in Constrained Access Environments
- Authors: Heeyoung Lee, Hoyoon Byun, Changdae Oh, JinYeong Bak, Kyungwoo Song,
- Abstract summary: We propose an OOD detection framework, MixDiff, that is applicable even when the model's parameters or its activations are not accessible to the end user.
We provide theoretical analysis to illustrate MixDiff's effectiveness in discerning OOD samples that induce overconfident outputs from the model.
- Score: 20.554546406575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accessing machine learning models through remote APIs has been gaining prevalence following the recent trend of scaling up model parameters for increased performance. Even though these models exhibit remarkable ability, detecting out-of-distribution (OOD) samples remains a crucial safety concern for end users as these samples may induce unreliable outputs from the model. In this work, we propose an OOD detection framework, MixDiff, that is applicable even when the model's parameters or its activations are not accessible to the end user. To bypass the access restriction, MixDiff applies an identical input-level perturbation to a given target sample and a similar in-distribution (ID) sample, then compares the relative difference in the model outputs of these two samples. MixDiff is model-agnostic and compatible with existing output-based OOD detection methods. We provide theoretical analysis to illustrate MixDiff's effectiveness in discerning OOD samples that induce overconfident outputs from the model and empirically demonstrate that MixDiff consistently enhances the OOD detection performance on various datasets in vision and text domains.
Related papers
- Can Your Generative Model Detect Out-of-Distribution Covariate Shift? [2.0144831048903566]
We propose a novel method for detecting Out-of-Distribution (OOD) sensory data using conditional Normalizing Flows (cNFs)
Our results on CIFAR10 vs. CIFAR10-C and ImageNet200 vs. ImageNet200-C demonstrate the effectiveness of the method.
arXiv Detail & Related papers (2024-09-04T19:27:56Z) - Out-of-Distribution Detection with a Single Unconditional Diffusion Model [54.15132801131365]
Out-of-distribution (OOD) detection is a critical task in machine learning that seeks to identify abnormal samples.
Traditionally, unsupervised methods utilize a deep generative model for OOD detection.
This paper explores whether a single model can perform OOD detection across diverse tasks.
arXiv Detail & Related papers (2024-05-20T08:54:03Z) - Deep Metric Learning-Based Out-of-Distribution Detection with Synthetic Outlier Exposure [0.0]
We propose a label-mixup approach to generate synthetic OOD data using Denoising Diffusion Probabilistic Models (DDPMs)
In the experiments, we found that metric learning-based loss functions perform better than the softmax.
Our approach outperforms strong baselines in conventional OOD detection metrics.
arXiv Detail & Related papers (2024-05-01T16:58:22Z) - Likelihood-based Out-of-Distribution Detection with Denoising Diffusion
Probabilistic Models [6.554019613111897]
We show that likelihood-based Out-of-Distribution detection can be extended to diffusion models.
We propose a new likelihood ratio for Out-of-Distribution detection with Deep Denoising Diffusion Models.
arXiv Detail & Related papers (2023-10-26T14:40:30Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
Fine-tuning deep learning models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness.
We propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model.
arXiv Detail & Related papers (2023-03-06T11:51:28Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-distribution (OOD) detection aims to identify OOD data based on representations extracted from well-trained deep models.
We propose a general methodology named watermarking in this paper.
We learn a unified pattern that is superimposed onto features of original data, and the model's detection capability is largely boosted after watermarking.
arXiv Detail & Related papers (2022-10-27T06:12:32Z) - CADet: Fully Self-Supervised Out-Of-Distribution Detection With
Contrastive Learning [11.897976063005315]
This work explores the use of self-supervised contrastive learning to the simultaneous detection of two types of OOD samples.
First, we pair self-supervised contrastive learning with the maximum mean discrepancy (MMD) two-sample test.
Motivated by this success, we introduce CADet, a novel method for OOD detection of single samples.
arXiv Detail & Related papers (2022-10-04T17:02:37Z) - Understanding, Detecting, and Separating Out-of-Distribution Samples and
Adversarial Samples in Text Classification [80.81532239566992]
We compare the two types of anomalies (OOD and Adv samples) with the in-distribution (ID) ones from three aspects.
We find that OOD samples expose their aberration starting from the first layer, while the abnormalities of Adv samples do not emerge until the deeper layers of the model.
We propose a simple method to separate ID, OOD, and Adv samples using the hidden representations and output probabilities of the model.
arXiv Detail & Related papers (2022-04-09T12:11:59Z) - Energy-bounded Learning for Robust Models of Code [16.592638312365164]
In programming, learning code representations has a variety of applications, including code classification, code search, comment generation, bug prediction, and so on.
We propose the use of an energy-bounded learning objective function to assign a higher score to in-distribution samples and a lower score to out-of-distribution samples in order to incorporate such out-of-distribution samples into the training process of source code models.
arXiv Detail & Related papers (2021-12-20T06:28:56Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.