論文の概要: $R^2$-Mesh: Reinforcement Learning Powered Mesh Reconstruction via Geometry and Appearance Refinement
- arxiv url: http://arxiv.org/abs/2408.10135v1
- Date: Mon, 19 Aug 2024 16:33:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 15:23:23.683488
- Title: $R^2$-Mesh: Reinforcement Learning Powered Mesh Reconstruction via Geometry and Appearance Refinement
- Title(参考訳): R^2$-Mesh: 幾何学と外観再構成による強化学習パワーメッシュ再構築
- Authors: Haoyang Wang, Liming Liu, Quanlu Jia, Jiangkai Wu, Haodan Zhang, Peiheng Wang, Xinggong Zhang,
- Abstract要約: Neural Radiance Fields (NeRF)に基づくメッシュ再構成は、コンピュータグラフィックス、仮想現実、医療画像などの様々なアプリケーションで人気がある。
マルチビュー画像からメッシュを段階的に生成し,最適化する新しいアルゴリズムを提案する。
本手法は,メッシュレンダリングの品質と幾何学的品質の両方において,高い競争力とロバストな性能を提供する。
- 参考スコア(独自算出の注目度): 5.810659946867557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mesh reconstruction based on Neural Radiance Fields (NeRF) is popular in a variety of applications such as computer graphics, virtual reality, and medical imaging due to its efficiency in handling complex geometric structures and facilitating real-time rendering. However, existing works often fail to capture fine geometric details accurately and struggle with optimizing rendering quality. To address these challenges, we propose a novel algorithm that progressively generates and optimizes meshes from multi-view images. Our approach initiates with the training of a NeRF model to establish an initial Signed Distance Field (SDF) and a view-dependent appearance field. Subsequently, we iteratively refine the SDF through a differentiable mesh extraction method, continuously updating both the vertex positions and their connectivity based on the loss from mesh differentiable rasterization, while also optimizing the appearance representation. To further leverage high-fidelity and detail-rich representations from NeRF, we propose an online-learning strategy based on Upper Confidence Bound (UCB) to enhance viewpoints by adaptively incorporating images rendered by the initial NeRF model into the training dataset. Through extensive experiments, we demonstrate that our method delivers highly competitive and robust performance in both mesh rendering quality and geometric quality.
- Abstract(参考訳): Neural Radiance Fields (NeRF) に基づくメッシュ再構成は、複雑な幾何学構造を扱う効率とリアルタイムレンダリングを容易にするため、コンピュータグラフィックス、仮想現実、医療画像などの様々なアプリケーションで人気がある。
しかし、既存の作品は正確な幾何学的詳細を捉えることができず、レンダリング品質の最適化に苦慮することが多い。
これらの課題に対処するために,マルチビュー画像からメッシュを段階的に生成し,最適化する新しいアルゴリズムを提案する。
提案手法は,初期手動距離場 (Signed Distance Field, SDF) とビュー依存外見場 (View-dependent appearance field) を確立するため,NeRFモデルのトレーニングによって開始される。
その後,メッシュ抽出法を用いてSDFを反復的に洗練し,メッシュの識別可能なラスタ化の損失に基づいて頂点位置と接続性の両方を連続的に更新し,外観表現を最適化する。
そこで我々は,NeRFモデルで作成した画像をトレーニングデータセットに適応的に組み込むことで視点を向上する,上信頼境界(UCB)に基づくオンライン学習戦略を提案する。
広範にわたる実験により,メッシュレンダリングの品質と幾何学的品質の両面で,高い競争力とロバスト性を実現する方法が実証された。
関連論文リスト
- Fine-Grained Multi-View Hand Reconstruction Using Inverse Rendering [11.228453237603834]
本稿では,逆レンダリングを利用して手ポーズを復元し,詳細を複雑化する多視点ハンドメッシュ再構成手法を提案する。
また、ハンドメッシュとテクスチャの両方を洗練させるために、新しいハンドアルベドとメッシュ(HAM)最適化モジュールも導入した。
提案手法は,再現精度とレンダリング品質の両面において,最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2024-07-08T07:28:24Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
統一された点ベース表現に基づく新しい視覚的ローカライゼーションフレームワーク PNeRFLoc を提案する。
一方、PNeRFLocは2次元特徴点と3次元特徴点をマッチングして初期ポーズ推定をサポートする。
一方、レンダリングベースの最適化を用いた新しいビュー合成によるポーズ改善も実現している。
論文 参考訳(メタデータ) (2023-12-17T08:30:00Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - SurfelNeRF: Neural Surfel Radiance Fields for Online Photorealistic
Reconstruction of Indoor Scenes [17.711755550841385]
SLAMに基づく手法は、3Dシーンの形状をリアルタイムで段階的に再構成することができるが、フォトリアリスティックな結果を描画することはできない。
NeRFベースの手法は、将来有望な新しいビュー合成結果を生成し、その長いオフライン最適化時間と幾何的制約の欠如は、オンライン入力を効率的に処理する上での課題となる。
本稿では、フレキシブルでスケーラブルなニューラルサーベイル表現を用いて、入力画像から幾何学的属性と外観特徴を抽出するSurfelNeRFを紹介する。
論文 参考訳(メタデータ) (2023-04-18T13:11:49Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
本稿では,自由視点画像の合成に有効なフレームワークであるGeneralizable Model-based Neural Radiance Fieldsを提案する。
具体的には、多視点2D画像からの出現コードを幾何学的プロキシに登録するための幾何学誘導型アテンション機構を提案する。
論文 参考訳(メタデータ) (2023-03-24T03:32:02Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
画像からテクスチャ化された表面メッシュを生成する新しいフレームワークを提案する。
我々のアプローチは、NeRFを用いて幾何学とビュー依存の外観を効率的に初期化することから始まります。
ジオメトリと共同で外観を洗練し、テクスチャ画像に変換してリアルタイムレンダリングします。
論文 参考訳(メタデータ) (2023-03-03T17:14:44Z) - GeCoNeRF: Few-shot Neural Radiance Fields via Geometric Consistency [31.22435282922934]
我々は、幾何認識整合性正規化を伴う数ショット設定でニューラルラジアンス場(NeRF)を正則化する新しいフレームワークを提案する。
本研究では,最新の数発のNeRFモデルと比較して,競争力のある結果が得られることを示す。
論文 参考訳(メタデータ) (2023-01-26T05:14:12Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
形状とSVBRDFを段階的に推定した新しいディープラーニングアーキテクチャを提案する。
ドメインランダム化された幾何学と現実的な材料を用いた大規模合成学習データセットを作成する。
合成データセットと実世界のデータセットの両方の実験により、合成データセットでトレーニングされたネットワークが、実世界の画像に対してうまく一般化できることが示されている。
論文 参考訳(メタデータ) (2020-04-01T12:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。