Assessment of Spectral based Solutions for the Detection of Floating Marine Debris
- URL: http://arxiv.org/abs/2408.10187v1
- Date: Mon, 19 Aug 2024 17:47:22 GMT
- Title: Assessment of Spectral based Solutions for the Detection of Floating Marine Debris
- Authors: Muhammad Alì, Francesca Razzano, Sergio Vitale, Giampaolo Ferraioli, Vito Pascazio, Gilda Schirinzi, Silvia Ullo,
- Abstract summary: Recently, the Marine Debris Archive (MARIDA) has been released as a standard dataset to develop and evaluate Machine Learning (ML) algorithms for detection of Marine Plastic Debris.
In this work, an assessment of spectral based solutions is proposed by evaluating performance on MARIDA dataset.
- Score: 2.3558144417896587
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Typically, the detection of marine debris relies on in-situ campaigns that are characterized by huge human effort and limited spatial coverage. Following the need of a rapid solution for the detection of floating plastic, methods based on remote sensing data have been proposed recently. Their main limitation is represented by the lack of a general reference for evaluating performance. Recently, the Marine Debris Archive (MARIDA) has been released as a standard dataset to develop and evaluate Machine Learning (ML) algorithms for detection of Marine Plastic Debris. The MARIDA dataset has been created for simplifying the comparison between detection solutions with the aim of stimulating the research in the field of marine environment preservation. In this work, an assessment of spectral based solutions is proposed by evaluating performance on MARIDA dataset. The outcome highlights the need of precise reference for fair evaluation.
Related papers
- Deep Learning Innovations for Underwater Waste Detection: An In-Depth Analysis [0.0]
This paper conducts a comprehensive review of state-of-the-art architectures and on the existing datasets to establish a baseline for submerged waste and trash detection.
The primary goal remains to establish the benchmark of the object localization techniques to be leveraged by advanced underwater sensors and autonomous underwater vehicles.
arXiv Detail & Related papers (2024-05-28T15:51:18Z) - Ocean Data Quality Assessment through Outlier Detection-enhanced Active
Learning [4.274369283265131]
The Argo network, dedicated to ocean profiling, generates a vast volume of observatory data.
Existing methods, including machine learning, fall short due to limited labeled data imbalanced datasets.
We propose an O framework for ocean data quality assessment employing AL to reduce human experts' workload.
arXiv Detail & Related papers (2023-12-17T20:57:22Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Weakly supervised marine animal detection from remote sensing images
using vector-quantized variational autoencoder [4.812718493682454]
This paper studies a reconstruction-based approach for weakly-supervised animal detection from aerial images in marine environments.
An anomaly detection framework computes metrics directly on the input space, enhancing interpretability and anomaly localization.
Our framework offers improved interpretability and localization of anomalies, providing valuable insights for monitoring marine ecosystems.
arXiv Detail & Related papers (2023-07-13T12:26:27Z) - Large-scale Detection of Marine Debris in Coastal Areas with Sentinel-2 [3.6842260407632903]
Efforts to quantify marine pollution are often conducted with sparse and expensive beach surveys.
Satellite data of coastal areas is readily available and can be leveraged to detect aggregations of marine debris containing plastic litter.
We present a detector for marine debris built on a deep segmentation model that outputs a probability for marine debris at the pixel level.
arXiv Detail & Related papers (2023-07-05T17:38:48Z) - Spectral Analysis of Marine Debris in Simulated and Observed
Sentinel-2/MSI Images using Unsupervised Classification [0.0]
This study uses Radiative Transfer Model (RTM) simulated data and data from the Multispectral Instrument (MSI) of the Sentinel-2 mission in combination with machine learning algorithms.
The results indicate that the spectral behavior of pollutants is influenced by factors such as the type of polymer and pixel coverage percentage.
These insights can guide future research in remote sensing applications for detecting marine plastic pollution.
arXiv Detail & Related papers (2023-06-26T18:46:47Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.