Dirac Theory as a Relativistic Flow
- URL: http://arxiv.org/abs/2408.10216v1
- Date: Mon, 22 Jul 2024 12:38:21 GMT
- Title: Dirac Theory as a Relativistic Flow
- Authors: Asher Yahalom,
- Abstract summary: We show how Schr"odinger's equation can be deduced from a fluid dynamical Lagrangian of a charged potential flow.
The quantum behaviour was derived from Fisher information terms which were added to the classical Lagrangian.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In previous papers we have shown how Schr\"{o}dinger's equation which includes an electromagnetic field interaction can be deduced from a fluid dynamical Lagrangian of a charged potential flow that interacts with an electromagnetic field. The quantum behaviour was derived from Fisher information terms which were added to the classical Lagrangian. It was thus shown that a quantum mechanical system is drived by information and not only electromagnetic fields. This program was applied also to Pauli's equations by removing the restriction of potential flow and using the Clebsch formalism. Although the analysis was quite successful there were still terms that did not admit interpretation, some of them can be easily traced to the relativistic Dirac theory. Here we repeat the analysis for a relativistic flow, pointing to a new approach for deriving relativistic quantum mechanics.
Related papers
- Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields [54.010858975226945]
We study the dynamics of EVBs in magnetic fields using exact solutions of the relativistic paraxial equation in magnetic fields.
We provide a unified description of different regimes under generalized Gouy rotation, linking the Gouy phase to EVB rotation angles.
This work offers new insights into the dynamics of EVBs in magnetic fields and suggests practical applications in beam manipulation and beam optics of vortex particles.
arXiv Detail & Related papers (2024-07-03T03:29:56Z) - Self-consistency, relativism and many-particle system [0.0]
Interrelation between concepts of self-consistency, relativism and many-particle systems is considered.
Paper shows that quantum systems with a time independent function of quasi-density probability in phase space are not capable to emit electromagnetic radiation.
arXiv Detail & Related papers (2024-04-21T08:38:40Z) - Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - Lecture Notes on Quantum Electrical Circuits [49.86749884231445]
Theory of quantum electrical circuits goes under the name of circuit quantum electrodynamics or circuit-QED.
The goal of the theory is to provide a quantum description of the most relevant degrees of freedom.
These lecture notes aim at giving a pedagogical overview of this subject for theoretically-oriented Master or PhD students in physics and electrical engineering.
arXiv Detail & Related papers (2023-12-08T19:26:34Z) - A Fisher Information Perspective of Relativistic Quantum Mechanics [0.0]
We show how Schrodinger's equation can be deduced from a fluid dynamical Lagrangian of a charged potential flow.
The quantum behaviour was derived from Fisher information terms which were added to the classical Lagrangian.
arXiv Detail & Related papers (2023-08-01T08:36:30Z) - Some Classical Models of Particles and Quantum Gauge Theories [0.0]
The article contains a review and new results of some mathematical models relevant to the interpretation of quantum mechanics.
One-particle wave functions can be modeled as plasma-like collections of a large number of particles and antiparticles.
arXiv Detail & Related papers (2022-11-03T16:53:19Z) - About non-relativistic quantum mechanics and electromagnetism [0.0]
We use the mathematical frame of the field theory and its quantization in the spirit of the quantum-mechanical many-body theory.
We show some examples of the importance of this extension of the many-body theory.
arXiv Detail & Related papers (2022-07-27T05:05:27Z) - Locally mediated entanglement in linearised quantum gravity [0.0]
An information-theoretic argument: entanglement mediated by a local field certifies that the field is not classical.
Previous derivations of the effect modelled gravity as instantaneous.
In this framework, entanglement is clearly mediated by a quantum feature of the field.
arXiv Detail & Related papers (2022-02-07T17:29:33Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.