Detection of Intracranial Hemorrhage for Trauma Patients
- URL: http://arxiv.org/abs/2408.10768v1
- Date: Tue, 20 Aug 2024 12:03:59 GMT
- Title: Detection of Intracranial Hemorrhage for Trauma Patients
- Authors: Antoine P. Sanner, Nils F. Grauhan, Marc A. Brockmann, Ahmed E. Othman, Anirban Mukhopadhyay,
- Abstract summary: We propose a novel Voxel-Complete IoU (VC-IoU) loss that encourages the network to learn the 3D aspect ratios of bounding boxes.
We extensively experiment on brain bleeding detection using a publicly available dataset, and validate it on a private cohort.
- Score: 1.0074894923170512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Whole-body CT is used for multi-trauma patients in the search of any and all injuries. Since an initial assessment needs to be rapid and the search for lesions is done for the whole body, very little time can be allocated for the inspection of a specific anatomy. In particular, intracranial hemorrhages are still missed, especially by clinical students. In this work, we present a Deep Learning approach for highlighting such lesions to improve the diagnostic accuracy. While most works on intracranial hemorrhages perform segmentation, detection only requires bounding boxes for the localization of the bleeding. In this paper, we propose a novel Voxel-Complete IoU (VC-IoU) loss that encourages the network to learn the 3D aspect ratios of bounding boxes and leads to more precise detections. We extensively experiment on brain bleeding detection using a publicly available dataset, and validate it on a private cohort, where we achieve 0.877 AR30, 0.728 AP30, and 0.653 AR30, 0.514 AP30 respectively. These results constitute a relative +5% improvement in Average Recall for both datasets compared to other loss functions. Finally, as there is little data currently publicly available for 3D object detection and as annotation resources are limited in the clinical setting, we evaluate the cost of different annotation methods, as well as the impact of imprecise bounding boxes in the training data on the detection performance.
Related papers
- Topology and Intersection-Union Constrained Loss Function for Multi-Region Anatomical Segmentation in Ocular Images [5.628938375586146]
Ocular Myasthenia Gravis (OMG) is a rare and challenging disease to detect in its early stages.
No publicly available dataset and tools currently exist for this purpose.
We propose a new topology and intersection-union constrained loss function (TIU loss) that improves performance using small training datasets.
arXiv Detail & Related papers (2024-11-01T13:17:18Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-08-17T20:40:30Z) - CT Perfusion is All We Need: 4D CNN Segmentation of Penumbra and Core in
Patients With Suspected Ischemic Stroke [1.6836876499886009]
This paper investigates different methods to utilize the entire 4 convolutionD as input to fully exploit thetemporal information.
Adopting the proposed 4D mJ-Net, a Dice Coefficient of 0.53 and 0.23 is achieved for segmenting penumbra and core areas, respectively.
arXiv Detail & Related papers (2023-03-15T16:53:19Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
impured training data [53.122045119395594]
We study how unhealthy samples within the training data affect anomaly detection performance for brain MRI-scans.
We evaluate a method to identify falsely labeled samples directly during training based on the reconstruction error of the AE.
arXiv Detail & Related papers (2022-04-12T13:05:18Z) - An Efficient Anchor-free Universal Lesion Detection in CT-scans [19.165942326142538]
We propose a robust one-stage anchor-free lesion detection network that can perform well across varying lesions sizes.
We obtain comparable results to the state-of-the-art methods, achieving an overall sensitivity of 86.05% on the DeepLesion dataset.
arXiv Detail & Related papers (2022-03-30T06:01:04Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Segmentation-free Estimation of Aortic Diameters from MRI Using Deep
Learning [2.231365407061881]
We propose a supervised deep learning method for the direct estimation of aortic diameters.
Our approach makes use of a 3D+2D convolutional neural network (CNN) that takes as input a 3D scan and outputs the aortic diameter at a given location.
Overall, the 3D+2D CNN achieved a mean absolute error between 2.2-2.4 mm depending on the considered aortic location.
arXiv Detail & Related papers (2020-09-09T18:28:00Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Universal Lesion Detection by Learning from Multiple Heterogeneously
Labeled Datasets [23.471903581482668]
We learn a multi-head multi-task lesion detector using all datasets and generate lesion proposals on DeepLesion.
We discover suspicious but unannotated lesions using knowledge transfer from single-type lesion detectors.
Our method outperforms the current state-of-the-art approach by 29% in the metric of average sensitivity.
arXiv Detail & Related papers (2020-05-28T02:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.