論文の概要: Self-supervised Learning of Hybrid Part-aware 3D Representation of 2D Gaussians and Superquadrics
- arxiv url: http://arxiv.org/abs/2408.10789v3
- Date: Sat, 28 Jun 2025 07:40:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 15:08:38.433649
- Title: Self-supervised Learning of Hybrid Part-aware 3D Representation of 2D Gaussians and Superquadrics
- Title(参考訳): 2次元ガウスとスーパークワッドのハイブリッド部分認識3次元表現の自己教師型学習
- Authors: Zhirui Gao, Renjiao Yi, Yuhang Huang, Wei Chen, Chenyang Zhu, Kai Xu,
- Abstract要約: PartGSは、オブジェクトやシーンを解釈可能な分解に解析するために、2Dガウスとスーパークワッドリックを統合する、自己管理された部分認識再構築フレームワークである。
提案手法は,DTU,ShapeNet,および実世界のデータセットに関する広範な実験において,最先端の手法と比較して優れた性能を示す。
- 参考スコア(独自算出の注目度): 16.446659867133977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-level 3D representations, such as point clouds, meshes, NeRFs and 3D Gaussians, are commonly used for modeling 3D objects and scenes. However, cognitive studies indicate that human perception operates at higher levels and interprets 3D environments by decomposing them into meaningful structural parts, rather than low-level elements like points or voxels. Structured geometric decomposition enhances scene interpretability and facilitates downstream tasks requiring component-level manipulation. In this work, we introduce PartGS, a self-supervised part-aware reconstruction framework that integrates 2D Gaussians and superquadrics to parse objects and scenes into an interpretable decomposition, leveraging multi-view image inputs to uncover 3D structural information. Our method jointly optimizes superquadric meshes and Gaussians by coupling their parameters within a hybrid representation. On one hand, superquadrics enable the representation of a wide range of shape primitives, facilitating flexible and meaningful decompositions. On the other hand, 2D Gaussians capture detailed texture and geometric details, ensuring high-fidelity appearance and geometry reconstruction. Operating in a self-supervised manner, our approach demonstrates superior performance compared to state-of-the-art methods across extensive experiments on the DTU, ShapeNet, and real-world datasets.
- Abstract(参考訳): ポイントクラウドやメッシュ,NeRF,3Dガウスといった低レベルの3D表現は,一般的に3Dオブジェクトやシーンのモデリングに使用される。
しかし、認知学的研究は、人間の知覚がより高いレベルで動作し、3D環境をポイントやボクセルのような低レベルの要素ではなく、意味のある構造部品に分解することで解釈することを示している。
構造的幾何分解はシーンの解釈可能性を高め、コンポーネントレベルの操作を必要とする下流タスクを容易にする。
本研究では,2次元ガウスとスーパークワッドリックを統合した自己教師型部分認識再構築フレームワークPartGSを紹介する。
提案手法は,ハイブリッド表現内でパラメータを結合することにより,スーパークワッドメッシュとガウスアンを協調的に最適化する。
一方、スーパークワッドリックは幅広い形状プリミティブの表現を可能にし、柔軟で有意義な分解を促進する。
一方、2Dガウスは細かなテクスチャと幾何学的詳細を捉え、高忠実な外観と幾何学的復元を確実にする。
本手法は,DTU,ShapeNet,および実世界のデータセットに関する広範囲にわたる実験において,最先端の手法と比較して優れた性能を示す。
関連論文リスト
- High-fidelity 3D Object Generation from Single Image with RGBN-Volume Gaussian Reconstruction Model [38.13429047918231]
本稿では,3次元のボクセル表現が明示的な3次元幾何情報を含む,新しいハイブリッドなVoxel-Gaussian表現を提案する。
我々の3Dボクセル表現は、2D画像から推定できるRGB特徴と表面正規特徴を整列する融合モジュールによって得られる。
論文 参考訳(メタデータ) (2025-04-02T08:58:34Z) - CompGS: Unleashing 2D Compositionality for Compositional Text-to-3D via Dynamically Optimizing 3D Gaussians [97.15119679296954]
CompGS は 3D Gaussian Splatting (GS) を用いた,効率的なテキストから3Dコンテンツ生成のための新しい生成フレームワークである。
CompGSは簡単に3D編集に拡張でき、シーン生成を容易にする。
論文 参考訳(メタデータ) (2024-10-28T04:35:14Z) - Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - Geometry Image Diffusion: Fast and Data-Efficient Text-to-3D with Image-Based Surface Representation [2.3213238782019316]
GIMDiffusionは、幾何学画像を利用して2次元画像を用いて3次元形状を効率よく表現する新しいテキスト・ツー・3Dモデルである。
安定拡散のような既存のテキスト・ツー・イメージモデルのリッチな2次元先行モデルを利用する。
簡単に言うと、GIMDiffusionは現行のText-to-Imageモデルに匹敵する速度で3Dアセットを生成することができる。
論文 参考訳(メタデータ) (2024-09-05T17:21:54Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - 3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis [49.352765055181436]
動的ビュー合成のための3次元幾何学的変形可能なガウススメッティング法を提案する。
提案手法は,動的ビュー合成と3次元動的再構成を改良した3次元形状認識変形モデリングを実現する。
論文 参考訳(メタデータ) (2024-04-09T12:47:30Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
セマンティック・ガウシアン(Semantic Gaussians)は,3次元ガウシアン・スプレイティングをベースとした,新しいオープン語彙シーン理解手法である。
既存の手法とは異なり、様々な2次元意味的特徴を3次元ガウスの新たな意味的構成要素にマッピングする多目的投影手法を設計する。
我々は,高速な推論のために,生の3Dガウスから意味成分を直接予測する3Dセマンティックネットワークを構築した。
論文 参考訳(メタデータ) (2024-03-22T21:28:19Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
既存のアプローチでは、大規模なテキスト・ツー・イメージモデルを使用して3D表現を最適化するか、オブジェクト中心のデータセット上で3Dジェネレータをトレーニングする。
テキストから高忠実度3Dシーンを合成する新しい手法であるSceneWiz3Dを紹介する。
論文 参考訳(メタデータ) (2023-12-13T18:59:30Z) - CC3D: Layout-Conditioned Generation of Compositional 3D Scenes [49.281006972028194]
本稿では,複雑な3次元シーンを2次元セマンティックなシーンレイアウトで合成する条件生成モデルであるCC3Dを紹介する。
合成3D-FRONTと実世界のKITTI-360データセットに対する評価は、我々のモデルが視覚的および幾何学的品質を改善したシーンを生成することを示す。
論文 参考訳(メタデータ) (2023-03-21T17:59:02Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
そこで本研究では,2次元領域における自己教師型手法を,微細な3次元形状分割作業に活用することを提案する。
複数のビューから3次元形状を描画し、コントラスト学習フレームワーク内に密接な対応学習タスクを設置する。
その結果、学習された2次元表現はビュー不変であり、幾何学的に一貫性がある。
論文 参考訳(メタデータ) (2022-08-18T00:48:15Z) - DensePose 3D: Lifting Canonical Surface Maps of Articulated Objects to
the Third Dimension [71.71234436165255]
DensePose 3Dは2次元画像アノテーションのみから弱い教師付きで再構築を学習できる手法である。
3Dスキャンを必要としないため、DensePose 3Dは異なる動物種などの幅広いカテゴリーの学習に利用できる。
我々は,人間と動物のカテゴリーの合成データと実データの両方をベースラインとして,最先端の非剛体構造と比較し,顕著な改善を示した。
論文 参考訳(メタデータ) (2021-08-31T18:33:55Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
プリミティブの集合として3次元オブジェクトの幾何を共同で復元できる新しい定式化を提案する。
我々のモデルは、プリミティブのバイナリツリーの形で、様々なオブジェクトの高レベルな構造的分解を復元する。
ShapeNet と D-FAUST のデータセットを用いた実験により,部品の組織化を考慮すれば3次元形状の推論が容易になることが示された。
論文 参考訳(メタデータ) (2020-04-02T17:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。