論文の概要: Towards Efficient Formal Verification of Spiking Neural Network
- arxiv url: http://arxiv.org/abs/2408.10900v1
- Date: Tue, 20 Aug 2024 14:43:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 13:15:27.906460
- Title: Towards Efficient Formal Verification of Spiking Neural Network
- Title(参考訳): スパイキングニューラルネットワークの効率的な形式検証に向けて
- Authors: Baekryun Seong, Jieung Kim, Sang-Ki Ko,
- Abstract要約: スパイクニューラルネットワーク(SNN)は、人間の脳のようにイベント駆動で、時間的に情報を圧縮する。
本稿では,SNNの対角的ロバスト性を検証するために,時間符号化を導入する。
- 参考スコア(独自算出の注目度): 2.771933807499954
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, AI research has primarily focused on large language models (LLMs), and increasing accuracy often involves scaling up and consuming more power. The power consumption of AI has become a significant societal issue; in this context, spiking neural networks (SNNs) offer a promising solution. SNNs operate event-driven, like the human brain, and compress information temporally. These characteristics allow SNNs to significantly reduce power consumption compared to perceptron-based artificial neural networks (ANNs), highlighting them as a next-generation neural network technology. However, societal concerns regarding AI go beyond power consumption, with the reliability of AI models being a global issue. For instance, adversarial attacks on AI models are a well-studied problem in the context of traditional neural networks. Despite their importance, the stability and property verification of SNNs remains in the early stages of research. Most SNN verification methods are time-consuming and barely scalable, making practical applications challenging. In this paper, we introduce temporal encoding to achieve practical performance in verifying the adversarial robustness of SNNs. We conduct a theoretical analysis of this approach and demonstrate its success in verifying SNNs at previously unmanageable scales. Our contribution advances SNN verification to a practical level, facilitating the safer application of SNNs.
- Abstract(参考訳): 近年、AI研究は主に大規模言語モデル(LLM)に焦点を当てている。
この文脈では、スパイクニューラルネットワーク(SNN)が有望なソリューションを提供する。
SNNは人間の脳のようにイベント駆動で動作し、情報を時間的に圧縮する。
これらの特徴により、SNNはパーセプトロンベースの人工ニューラルネットワーク(ANN)と比較して消費電力を大幅に削減し、次世代のニューラルネットワーク技術として強調することができる。
しかし、AIに関する社会的懸念は電力消費を超えており、AIモデルの信頼性が世界的な問題となっている。
例えば、AIモデルに対する敵攻撃は、従来のニューラルネットワークの文脈でよく研究されている問題である。
その重要性にもかかわらず、SNNの安定性と特性検証は研究の初期段階にある。
ほとんどのSNN検証手法は時間を要するが、ほとんど拡張性がないため、実用的な応用は困難である。
本稿では,SNNの対角的ロバスト性を検証するために,時間符号化を導入する。
本稿では,本手法の理論的解析を行い,従来は管理不能であったSNNの検証に成功したことを示す。
我々の貢献は、SNNの検証を実用的なレベルに進め、SNNのより安全な適用を促進する。
関連論文リスト
- Enhancing Adversarial Robustness in SNNs with Sparse Gradients [46.15229142258264]
スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率の高い操作と生物学的にインスパイアされた構造に対して大きな注目を集めている。
既存の技術は、ANNから適応したものであれ、SNNのために特別に設計されたものであれ、SNNの訓練や強力な攻撃に対する防御に制限がある。
本稿では,SNNの頑健性を高めるための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T05:39:27Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
スパイキングニューラルネットワーク(SNN)は、時間データの複雑さを捉えるためのユニークな経路を提供する。
SNNを時系列予測に適用することは、効果的な時間的アライメントの難しさ、符号化プロセスの複雑さ、およびモデル選択のための標準化されたガイドラインの欠如により困難である。
本稿では,時間情報処理におけるスパイクニューロンの効率を活かした時系列予測タスクにおけるSNNのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T16:23:50Z) - Brain-Inspired Spiking Neural Networks for Industrial Fault Diagnosis: A Survey, Challenges, and Opportunities [10.371337760495521]
Spiking Neural Network (SNN)は、Brainにインスパイアされたコンピューティングの原理に基づいている。
本稿では,SNNモデルの理論的進歩を体系的にレビューし,SNNとは何かという疑問に答える。
論文 参考訳(メタデータ) (2023-11-13T11:25:34Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Uncovering the Representation of Spiking Neural Networks Trained with
Surrogate Gradient [11.0542573074431]
スパイキングニューラルネットワーク (SNN) は、その生物の楽観性とエネルギー効率のため、次世代ニューラルネットワークの候補として認識されている。
近年、SNNは、代理勾配トレーニングを用いて、画像認識タスクにおいて、ほぼ最先端のパフォーマンスを達成できることを示した。
論文 参考訳(メタデータ) (2023-04-25T19:08:29Z) - Fluctuation-driven initialization for spiking neural network training [3.976291254896486]
スパイキングニューラルネットワーク(SNN)は、脳内の低出力でフォールトトレラントな情報処理を実現する。
我々は、脳内でよく見られるゆらぎ駆動型体制にインスパイアされたSNNの一般的な戦略を開発する。
論文 参考訳(メタデータ) (2022-06-21T09:48:49Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
スパイキングニューラルネットワーク(SNN)は、現実の効率クリティカルなアプリケーションにますます多くデプロイされている。
研究者はすでに、SNNを敵の例で攻撃できることを実証している。
我々の知る限りでは、これはSNNの堅牢なトレーニングに関する最初の分析である。
論文 参考訳(メタデータ) (2022-04-12T21:26:49Z) - Spiking Neural Networks with Single-Spike Temporal-Coded Neurons for
Network Intrusion Detection [6.980076213134383]
スパイキングニューラルネット(SNN)は、その強い生物楽観性と高いエネルギー効率のために興味深い。
しかし、その性能は従来のディープニューラルネットワーク(DNN)よりもはるかに遅れている。
論文 参考訳(メタデータ) (2020-10-15T14:46:18Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。