ISLES'24: Final Infarct Prediction with Multimodal Imaging and Clinical Data. Where Do We Stand?
- URL: http://arxiv.org/abs/2408.10966v2
- Date: Mon, 07 Jul 2025 17:34:46 GMT
- Title: ISLES'24: Final Infarct Prediction with Multimodal Imaging and Clinical Data. Where Do We Stand?
- Authors: Ezequiel de la Rosa, Ruisheng Su, Mauricio Reyes, Evamaria O. Riedel, Hakim Baazaoui, Roland Wiest, Florian Kofler, Kaiyuan Yang, David Robben, Mahsa Mojtahedi, Laura van Poppel, Lucas de Vries, Anthony Winder, Kimberly Amador, Nils D. Forkert, Gyeongyeon Hwang, Jiwoo Song, Dohyun Kim, Eneko Uruñuela, Annabella Bregazzi, Matthias Wilms, Hyun Yang, Jin Tae Kwak, Sumin Jung, Luan Matheus Trindade Dalmazo, Kumaradevan Punithakumar, Moona Mazher, Abdul Qayyum, Steven Niederer, Jacob Idoko, Mariana Bento, Gouri Ginde, Tianyi Ren, Juampablo Heras Rivera, Mehmet Kurt, Carole Frindel, Susanne Wegener, Jan S. Kirschke, Benedikt Wiestler, Bjoern Menze,
- Abstract summary: ISLES24 challenge focuses on the prediction of final infarct volumes from pre-interventional acute stroke imaging and clinical data.<n>Top-performing model, a multimodal nnU-Net-based architecture, achieved a Dice score of 0.285 on hidden test set of 98 cases.
- Score: 5.354756727899756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate estimation of brain infarction (i.e., irreversibly damaged tissue) is critical for guiding treatment decisions in acute ischemic stroke. Reliable infarct prediction informs key clinical interventions, including the need for patient transfer to comprehensive stroke centers, the potential benefit of additional reperfusion attempts during mechanical thrombectomy, decisions regarding secondary neuroprotective treatments, and ultimately, prognosis of clinical outcomes. This work introduces the Ischemic Stroke Lesion Segmentation (ISLES) 2024 challenge, which focuses on the prediction of final infarct volumes from pre-interventional acute stroke imaging and clinical data. ISLES24 provides a comprehensive, multimodal setting where participants can leverage all clinically and practically available data, including full acute CT imaging, sub-acute follow-up MRI, and structured clinical information, across a train set of 150 cases. On the hidden test set of 98 cases, the top-performing model, a multimodal nnU-Net-based architecture, achieved a Dice score of 0.285 (+/- 0.213) and an absolute volume difference of 21.2 (+/- 37.2) mL, underlining the significant challenges posed by this task and the need for further advances in multimodal learning. This work makes two primary contributions: first, we establish a standardized, clinically realistic benchmark for post-treatment infarct prediction, enabling systematic evaluation of multimodal algorithmic strategies on a longitudinal stroke dataset; second, we analyze current methodological limitations and outline key research directions to guide the development of next-generation infarct prediction models.
Related papers
- Conditional Diffusion Model with Anatomical-Dose Dual Constraints for End-to-End Multi-Tumor Dose Prediction [13.716930604289924]
ADDiff-Dose is an Anatomical-Dose Dual Constraints Diffusion Model for end-to-end multi-tumor dose prediction.<n>It incorporates conditional features via a multi-head attention mechanism and utilizes a composite loss function combining MSE, conditional terms, and KL divergence.<n>It significantly outperforms traditional baselines, achieving an MAE of 0.101-0.154, a DICE coefficient of 0.927, and limiting spinal cord maximum dose error to within 0.1 Gy.
arXiv Detail & Related papers (2025-08-04T04:25:47Z) - An Agentic System for Rare Disease Diagnosis with Traceable Reasoning [58.78045864541539]
We introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM)<n>DeepRare generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning.<n>The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases.
arXiv Detail & Related papers (2025-06-25T13:42:26Z) - CXR-LT 2024: A MICCAI challenge on long-tailed, multi-label, and zero-shot disease classification from chest X-ray [64.2434525370243]
The CXR-LT series is a community-driven initiative designed to enhance lung disease classification using chest X-rays.<n>The CXR-LT 2024 expands the dataset to 377,110 chest X-rays (CXRs) and 45 disease labels, including 19 new rare disease findings.<n>This paper provides an overview of CXR-LT 2024, detailing the data curation process and consolidating state-of-the-art solutions.
arXiv Detail & Related papers (2025-06-09T17:53:31Z) - Predicting Postoperative Stroke in Elderly SICU Patients: An Interpretable Machine Learning Model Using MIMIC Data [0.0]
Postoperative stroke remains a critical complication in elderly surgical intensive care unit (SICU) patients.<n>We constructed a combined cohort of 19,085 elderly SICU admissions from the MIMIC-III and MIMIC-IV databases.<n>We developed an interpretable machine learning framework to predict in-hospital stroke using clinical data from the first 24 hours of intensive care unit stay.
arXiv Detail & Related papers (2025-06-02T22:53:12Z) - How We Won the ISLES'24 Challenge by Preprocessing [0.1675245825272646]
Supervised deep learning methods have emerged as the leading solution for stroke lesion segmentation.<n>The ISLES'24 challenge addresses this need by providing longitudinal stroke imaging data.<n>Our winning solution shows that a carefully designed preprocessing pipeline is beneficial for accurate segmentation.
arXiv Detail & Related papers (2025-05-23T23:25:00Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.
This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - Enhancing Osteoporosis Detection: An Explainable Multi-Modal Learning Framework with Feature Fusion and Variable Clustering [6.196283036344105]
Osteoporosis is a common condition that increases fracture risk, especially in older adults.
This study presents a novel multi-modal learning framework that integrates clinical and imaging data to improve diagnostic accuracy and model interpretability.
arXiv Detail & Related papers (2024-11-01T13:58:15Z) - ISLES 2024: The first longitudinal multimodal multi-center real-world dataset in (sub-)acute stroke [2.7919032539697444]
Stroke remains a leading cause of global morbidity and mortality, placing a heavy socioeconomic burden.
To develop machine learning algorithms that can extract meaningful and reproducible models of brain function from stroke images.
Our dataset is the first to offer comprehensive longitudinal stroke data, including acute CT imaging with angiography and perfusion, follow-up MRI at 2-9 days, and acute and longitudinal clinical data up to a three-month outcome.
arXiv Detail & Related papers (2024-08-20T18:59:52Z) - CO2Wounds-V2: Extended Chronic Wounds Dataset From Leprosy Patients [57.31670527557228]
This paper introduces the CO2Wounds-V2 dataset, an extended collection of RGB wound images from leprosy patients.
It aims to enhance the development and testing of image-processing algorithms in the medical field.
arXiv Detail & Related papers (2024-08-20T13:21:57Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [54.98321887435557]
This paper presents a suite of 23 meticulously curated AI-ready datasets covering multi-modal input features and 8 crucial prediction challenges in clinical trial design.<n>We provide basic validation methods for each task to ensure the datasets' usability and reliability.<n>We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - An Attention Based Pipeline for Identifying Pre-Cancer Lesions in Head and Neck Clinical Images [1.0957311485487375]
Head and neck cancer is diagnosed in specialist centres after a surgical biopsy, but there is a potential for these to be missed leading to delayed diagnosis.
We present an attention based pipeline that identifies suspected lesions, segments, and classifies them as non-dysplastic, dysplastic and cancerous lesions.
arXiv Detail & Related papers (2024-05-03T09:02:17Z) - Fusion of Diffusion Weighted MRI and Clinical Data for Predicting
Functional Outcome after Acute Ischemic Stroke with Deep Contrastive Learning [1.4149937986822438]
Stroke is a common disabling neurological condition that affects about one-quarter of the adult population over age 25.
Our proposed fusion model achieves 0.87, 0.80 and 80.45% for AUC, F1-score and accuracy, respectively.
arXiv Detail & Related papers (2024-02-16T18:51:42Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - ISLES 2022: A multi-center magnetic resonance imaging stroke lesion
segmentation dataset [36.278933802685316]
This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location.
It is split into a training dataset of n=250 and a test dataset of n=150.
The test dataset will be used for model validation only and will not be released to the public.
arXiv Detail & Related papers (2022-06-14T08:54:40Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.