CTP-LLM: Clinical Trial Phase Transition Prediction Using Large Language Models
- URL: http://arxiv.org/abs/2408.10995v1
- Date: Tue, 20 Aug 2024 16:43:05 GMT
- Title: CTP-LLM: Clinical Trial Phase Transition Prediction Using Large Language Models
- Authors: Michael Reinisch, Jianfeng He, Chenxi Liao, Sauleh Ahmad Siddiqui, Bei Xiao,
- Abstract summary: We investigate Clinical Trial Outcome Prediction (CTOP) using trial design documents to predict phase transitions automatically.
Our fine-tuned GPT-3.5-based model (CTP-LLM) predicts clinical trial phase transition by analyzing the trial's original protocol texts without requiring human-selected features.
- Score: 5.4315728770105185
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: New medical treatment development requires multiple phases of clinical trials. Despite the significant human and financial costs of bringing a drug to market, less than 20% of drugs in testing will make it from the first phase to final approval. Recent literature indicates that the design of the trial protocols significantly contributes to trial performance. We investigated Clinical Trial Outcome Prediction (CTOP) using trial design documents to predict phase transitions automatically. We propose CTP-LLM, the first Large Language Model (LLM) based model for CTOP. We also introduce the PhaseTransition (PT) Dataset; which labels trials based on their progression through the regulatory process and serves as a benchmark for CTOP evaluation. Our fine-tuned GPT-3.5-based model (CTP-LLM) predicts clinical trial phase transition by analyzing the trial's original protocol texts without requiring human-selected features. CTP-LLM achieves a 67% accuracy rate in predicting trial phase transitions across all phases and a 75% accuracy rate specifically in predicting the transition from Phase~III to final approval. Our experimental performance highlights the potential of LLM-powered applications in forecasting clinical trial outcomes and assessing trial design.
Related papers
- Can artificial intelligence predict clinical trial outcomes? [5.326858857564308]
This study evaluates the predictive capabilities of large language models (LLMs) in determining clinical trial outcomes.
We compare the models' performance using metrics including balanced accuracy, specificity, recall, and Matthews Correlation Coefficient (MCC)
Oncology trials, characterized by high complexity, remain challenging for all models.
arXiv Detail & Related papers (2024-11-26T17:05:27Z) - Early Prediction of Causes (not Effects) in Healthcare by Long-Term Clinical Time Series Forecasting [11.96384267146423]
We propose to directly predict the causes via time series forecasting (TSF) of clinical variables.
Because model training does not rely on a particular label anymore, the forecasted data can be used to predict any consensus-based label.
arXiv Detail & Related papers (2024-08-07T14:52:06Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Language Interaction Network for Clinical Trial Approval Estimation [37.60098683485169]
We introduce the Language Interaction Network (LINT), a novel approach that predicts trial outcomes using only the free-text descriptions of the trials.
We have rigorously tested LINT across three phases of clinical trials, where it achieved ROC-AUC scores of 0.770, 0.740, and 0.748.
arXiv Detail & Related papers (2024-04-26T14:50:59Z) - TrialDura: Hierarchical Attention Transformer for Interpretable Clinical Trial Duration Prediction [19.084936647082632]
We propose TrialDura, a machine learning-based method that estimates the duration of clinical trials using multimodal data.
We encode them into Bio-BERT embeddings specifically tuned for biomedical contexts to provide a deeper and more relevant semantic understanding.
Our proposed model demonstrated superior performance with a mean absolute error (MAE) of 1.04 years and a root mean square error (RMSE) of 1.39 years compared to the other models.
arXiv Detail & Related papers (2024-04-20T02:12:59Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
We present a method named AutoTrial to aid the design of clinical eligibility criteria using language models.
Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts.
arXiv Detail & Related papers (2023-05-19T01:04:16Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
Clinical trials are essential to drug development but time-consuming, costly, and prone to failure.
We propose Sequential Predictive mOdeling of clinical Trial outcome (SPOT) that first identifies trial topics to cluster the multi-sourced trial data into relevant trial topics.
With the consideration of each trial sequence as a task, it uses a meta-learning strategy to achieve a point where the model can rapidly adapt to new tasks with minimal updates.
arXiv Detail & Related papers (2023-04-07T23:04:27Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways.
We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates.
arXiv Detail & Related papers (2020-12-24T05:19:03Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - Comparative Analysis of Predictive Methods for Early Assessment of
Compliance with Continuous Positive Airway Pressure Therapy [55.41644538483948]
compliance with continuous positive airway pressure (CPAP) is accepted as more than 4h of CPAP average use nightly.
Previous works already reported factors significantly related to compliance with the therapy.
This work intends to take a further step in this direction by building compliance classifiers with CPAP therapy at three different moments of the patient follow-up.
arXiv Detail & Related papers (2019-12-27T14:44:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.