論文の概要: DOMBA: Double Model Balancing for Access-Controlled Language Models via Minimum-Bounded Aggregation
- arxiv url: http://arxiv.org/abs/2408.11121v1
- Date: Tue, 20 Aug 2024 18:23:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 21:16:53.913807
- Title: DOMBA: Double Model Balancing for Access-Controlled Language Models via Minimum-Bounded Aggregation
- Title(参考訳): DOMBA:最小境界アグリゲーションによるアクセス制御言語モデルのための二重モデルバランシング
- Authors: Tom Segal, Asaf Shabtai, Yuval Elovici,
- Abstract要約: データセット上での大規模言語モデル(LLM)のトレーニングは、無許可のユーザに機密情報を暴露する可能性がある。
DOMBA - 二重モデルバランシング - LLMのトレーニングとデプロイのためのシンプルなアプローチを提案する。
- 参考スコア(独自算出の注目度): 28.49407031366749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The utility of large language models (LLMs) depends heavily on the quality and quantity of their training data. Many organizations possess large data corpora that could be leveraged to train or fine-tune LLMs tailored to their specific needs. However, these datasets often come with access restrictions that are based on user privileges and enforced by access control mechanisms. Training LLMs on such datasets could result in exposure of sensitive information to unauthorized users. A straightforward approach for preventing such exposure is to train a separate model for each access level. This, however, may result in low utility models due to the limited amount of training data per model compared to the amount in the entire organizational corpus. Another approach is to train a single LLM on all the data while limiting the exposure of unauthorized information. However, current exposure-limiting methods for LLMs are ineffective for access-controlled data, where sensitive information appears frequently across many training examples. We propose DOMBA - double model balancing - a simple approach for training and deploying LLMs that provides high utility and access-control functionality with security guarantees. DOMBA aggregates the probability distributions of two models, each trained on documents with (potentially many) different access levels, using a "min-bounded" average function (a function that is bounded by the smaller value, e.g., harmonic mean). A detailed mathematical analysis and extensive evaluation show that DOMBA safeguards restricted information while offering utility comparable to non-secure models.
- Abstract(参考訳): 大規模言語モデル(LLM)の有用性は、トレーニングデータの品質と量に大きく依存する。
多くの組織は、特定のニーズに合わせてトレーニングや微調整のLLMに活用できる大規模なデータコーパスを持っている。
しかしながら、これらのデータセットには、ユーザ権限に基づいてアクセス制御機構によって強制されるアクセス制限が伴うことが多い。
このようなデータセット上でのLSMのトレーニングは、無許可のユーザに機密情報を暴露する可能性がある。
このような露出を防ぐための簡単なアプローチは、アクセスレベル毎に別々のモデルをトレーニングすることだ。
しかし、これは、組織内の全コーパスの量と比較して、モデル毎のトレーニングデータ量が限られているため、低ユーティリティモデルをもたらす可能性がある。
もうひとつのアプローチは、許可されていない情報の露出を制限しながら、すべてのデータに対して単一のLSMをトレーニングすることです。
しかし、LLMの現在の露光制限法は、多くのトレーニング例においてセンシティブな情報が頻繁に現れるアクセス制御データには効果がない。
DOMBA - 二重モデルバランシング - LLMのトレーニングとデプロイのためのシンプルなアプローチを提案する。
DOMBAは2つのモデルの確率分布を集約し、それぞれが(潜在的に多くの)異なるアクセスレベルを持つ文書で訓練され、"min-bounded"平均関数(より小さな値、例えば調和平均で有界な関数)を使用する。
詳細な数学的解析と広範囲な評価は、DOMBAが制限された情報を保護し、非セキュアモデルに匹敵するユーティリティを提供することを示している。
関連論文リスト
- Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
現実世界のNLPアプリケーションでは、Large Language Models (LLMs) は巨大なデータセットの広範なトレーニングのために、有望なソリューションを提供する。
LLKDは、教師と学生の両方の信号を組み込んだ適応的なサンプル選択法である。
総合的な実験により,LLKDは高いデータ効率で,様々なデータセットで優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-11-12T18:57:59Z) - Order of Magnitude Speedups for LLM Membership Inference [5.124111136127848]
大規模言語モデル(LLM)は、コンピューティングを広く革新させるという約束を持っているが、その複雑さと広範なトレーニングデータもまた、プライバシの脆弱性を露呈している。
LLMに関連する最も単純なプライバシーリスクの1つは、メンバーシップ推論攻撃(MIA)に対する感受性である。
文書がモデルのトレーニングセットに属しているか否かを判断するために,小さな量子レグレッションモデルのアンサンブルを利用する低コストMIAを提案する。
論文 参考訳(メタデータ) (2024-09-22T16:18:14Z) - CELLM: An Efficient Communication in Large Language Models Training for Federated Learning [0.0]
本論文は,フェデレートラーニング(FL)における大規模言語モデル(LLM)の効率的な学習手法の開発を目的とする。
まず,ローランク適応(LoRA)を用いて局所モデルトレーニングの計算負荷を削減する。
第2に、コミュニケーションコストを大幅に削減するために、トレーニング全体を通してスパース更新を通信します。
論文 参考訳(メタデータ) (2024-07-30T05:24:08Z) - Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs [61.04246774006429]
本稿では,攻撃者によるLSMエージェントを用いたブラックボックスプロンプト最適化手法を提案する。
ベースラインプレフィックス・サフィックス測定と比較すると,命令ベースのプロンプトは,トレーニングデータと23.7%のオーバラップで出力を生成する。
以上の結果から,命令調整モデルでは,ベースモデルと同等に事前学習データを公開することが可能であり,他のLSMが提案する命令を用いることで,新たな自動攻撃の道を開くことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-05T19:32:01Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - Do Membership Inference Attacks Work on Large Language Models? [141.2019867466968]
メンバーシップ推論攻撃(MIA)は、特定のデータポイントがターゲットモデルのトレーニングデータのメンバーであるかどうかを予測しようとする。
我々は、Pileで訓練された言語モデルに対して、MIAの大規模評価を行い、そのパラメータは160Mから12Bまでである。
様々な LLM サイズや領域にまたがるほとんどの設定において,MIA はランダムな推測よりもほとんど優れていないことがわかった。
論文 参考訳(メタデータ) (2024-02-12T17:52:05Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning [32.52811740662061]
本稿では,大規模言語モデル(LLM)に適した新しいフェデレーション学習アルゴリズムDP-LoRAを紹介する。
DP-LoRAは、重み付け更新のノイズを追加し、データプライバシを個別に維持しつつ、協調的なモデルトレーニングを容易にするガウス機構を使用することで、データのプライバシを保存する。
論文 参考訳(メタデータ) (2023-12-29T06:50:38Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
本稿では,大規模な言語モデルをアノテータとして利用し,それをアクティブな学習ループに配置して,アノテートを効率的に行うLLMaAAを提案する。
我々は、エンティティ認識と関係抽出という、2つの古典的NLPタスクの実験と分析を行う。
LLMaAAでは、LLM生成ラベルからトレーニングされたタスク固有のモデルが、数百の注釈付きサンプルで教師より優れている。
論文 参考訳(メタデータ) (2023-10-30T14:54:15Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。