論文の概要: FATE: Focal-modulated Attention Encoder for Temperature Prediction
- arxiv url: http://arxiv.org/abs/2408.11336v1
- Date: Wed, 21 Aug 2024 04:40:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 18:28:56.227870
- Title: FATE: Focal-modulated Attention Encoder for Temperature Prediction
- Title(参考訳): FATE: 温度予測のための焦点変調アテンションエンコーダ
- Authors: Tajamul Ashraf, Janibul Bashir,
- Abstract要約: 気候変動は21世紀の大きな課題の1つである。
従来のデータ駆動モデルはリカレントニューラルネットワーク(RNN)を使用することが多いが、並列化には制限がある。
本稿では,FocalNet Transformerアーキテクチャに基づく新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the major challenges of the twenty-first century is climate change, evidenced by rising sea levels, melting glaciers, and increased storm frequency. Accurate temperature forecasting is vital for understanding and mitigating these impacts. Traditional data-driven models often use recurrent neural networks (RNNs) but face limitations in parallelization, especially with longer sequences. To address this, we introduce a novel approach based on the FocalNet Transformer architecture. Our Focal modulation Attention Encoder (FATE) framework operates in a multi-tensor format, utilizing tensorized modulation to capture spatial and temporal nuances in meteorological data. Comparative evaluations against existing transformer encoders, 3D CNNs, LSTM, and ConvLSTM models show that FATE excels at identifying complex patterns in temperature data. Additionally, we present a new labeled dataset, the Climate Change Parameter dataset (CCPD), containing 40 years of data from Jammu and Kashmir on seven climate-related parameters. Experiments with real-world temperature datasets from the USA, Canada, and Europe show accuracy improvements of 12\%, 23\%, and 28\%, respectively, over current state-of-the-art models. Our CCPD dataset also achieved a 24\% improvement in accuracy. To support reproducible research, we have released the source code and pre-trained FATE model at \href{https://github.com/Tajamul21/FATE}{https://github.com/Tajamul21/FATE}.
- Abstract(参考訳): 21世紀の大きな課題の1つは気候変動であり、海面の上昇、氷河の融解、嵐の頻度の増加によって証明されている。
正確な温度予測は、これらの影響を理解し緩和するために不可欠である。
従来のデータ駆動モデルはリカレントニューラルネットワーク(RNN)を使用することが多いが、特に長いシーケンスでは並列化の制限に直面している。
そこで本研究では,FocalNet Transformerアーキテクチャに基づく新しいアプローチを提案する。
我々のFATE(Foccal modulation Attention Encoder)フレームワークは、テンソル化変調を用いて気象データの空間的・時間的ニュアンスをキャプチャする。
既存の変圧器エンコーダ,3D CNN,LSTM,ConvLSTMモデルとの比較評価により,FATEは温度データにおける複雑なパターンの同定に優れていることが示された。
さらに,新しいラベル付きデータセットである気候変化パラメーターデータセット(CCPD)を提案し,JammuとKashmirの7つの気候関連パラメータに関する40年間のデータを含む。
米国、カナダ、欧州の実際の温度データセットによる実験では、現在の最先端モデルよりも、それぞれ12\%、23\%、28\%の精度の向上が示されている。
CCPDデータセットの精度も24倍に向上した。
再現性のある研究をサポートするため、私たちはソースコードと事前訓練されたFATEモデルを \href{https://github.com/Tajamul21/FATE}{https://github.com/Tajamul21/FATE} でリリースしました。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
本研究では,畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)を併用したハイブリッドモデルを提案する。
CNNは空間的特徴抽出に利用され、LSTMは時間的依存を処理し、予測精度と安定性が大幅に向上する。
論文 参考訳(メタデータ) (2024-10-19T03:38:53Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
本研究では,デリー地域の温度予測精度を高めるために,ハイブリッドCNN-LSTMモデルを提案する。
モデルの構築とトレーニングには,包括的データ前処理や探索分析など,直接的および間接的手法を併用した。
実験結果から,CNN-LSTMモデルが従来の予測手法よりも精度と安定性の両面で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-14T11:06:07Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Mitigating Cold-start Forecasting using Cold Causal Demand Forecasting
Model [10.132124789018262]
我々は、因果推論とディープラーニングモデルを統合するCDF-cold(Cold Causal Demand Forecasting)フレームワークを紹介する。
実験により,CDF-coldフレームワークは,多変量時系列データの将来値を予測する上で,最先端の予測モデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-06-15T16:36:34Z) - SERT: A Transfomer Based Model for Spatio-Temporal Sensor Data with
Missing Values for Environmental Monitoring [0.0]
センサーから収集されたデータは、故障した機器やメンテナンス上の問題によって、しばしば値が失われる。
計算を必要とせず、欠落したデータを処理しながら、多変量時間予測を行うことのできる2つのモデルを提案する。
論文 参考訳(メタデータ) (2023-06-05T17:06:23Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - TENT: Tensorized Encoder Transformer for Temperature Forecasting [3.498371632913735]
天気予報のためのトランスフォーマーアーキテクチャに基づく新しいモデルを提案する。
元の変換器と3D畳み込みニューラルネットワークと比較して、提案したTENTモデルは、気象データの基本となる複雑なパターンをより良くモデル化できることを示す。
2つの実生活気象データセットの実験を行う。
論文 参考訳(メタデータ) (2021-06-28T14:17:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。