論文の概要: Toward Enhancing Vehicle Color Recognition in Adverse Conditions: A Dataset and Benchmark
- arxiv url: http://arxiv.org/abs/2408.11589v2
- Date: Sun, 20 Oct 2024 15:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 06:11:36.148275
- Title: Toward Enhancing Vehicle Color Recognition in Adverse Conditions: A Dataset and Benchmark
- Title(参考訳): 逆条件下での車両色認識の強化に向けて:データセットとベンチマーク
- Authors: Gabriel E. Lima, Rayson Laroca, Eduardo Santos, Eduil Nascimento Jr., David Menotti,
- Abstract要約: 車両色認識(VCR)は、視覚的に区別可能な車両の属性であるため、重要な研究の関心を集めている。
このタスクの既存の手法の成功にもかかわらず、文献で使用されるデータセットの比較的低い複雑さは、ほとんど見過ごされてきている。
この研究は、より困難なVCRシナリオを表す新しいデータセットをコンパイルすることで、このギャップに対処する。
- 参考スコア(独自算出の注目度): 2.326743352134195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle information recognition is crucial in various practical domains, particularly in criminal investigations. Vehicle Color Recognition (VCR) has garnered significant research interest because color is a visually distinguishable attribute of vehicles and is less affected by partial occlusion and changes in viewpoint. Despite the success of existing methods for this task, the relatively low complexity of the datasets used in the literature has been largely overlooked. This research addresses this gap by compiling a new dataset representing a more challenging VCR scenario. The images - sourced from six license plate recognition datasets - are categorized into eleven colors, and their annotations were validated using official vehicle registration information. We evaluate the performance of four deep learning models on a widely adopted dataset and our proposed dataset to establish a benchmark. The results demonstrate that our dataset poses greater difficulty for the tested models and highlights scenarios that require further exploration in VCR. Remarkably, nighttime scenes account for a significant portion of the errors made by the best-performing model. This research provides a foundation for future studies on VCR, while also offering valuable insights for the field of fine-grained vehicle classification.
- Abstract(参考訳): 車両情報認識は様々な分野、特に刑事捜査において重要である。
車両色認識(VCR)は、視覚的に識別可能な車両の属性であり、部分閉塞や視点の変化の影響を受けないため、重要な研究の関心を集めている。
このタスクの既存の手法の成功にもかかわらず、文献で使用されるデータセットの比較的低い複雑さは、ほとんど見過ごされてきている。
この研究は、より困難なVCRシナリオを表す新しいデータセットをコンパイルすることで、このギャップに対処する。
6つのナンバープレート認識データセットから得られた画像は11色に分類され、公式車両登録情報を用いてアノテーションが検証された。
我々は、広く採用されているデータセットと提案したデータセットを用いて、4つのディープラーニングモデルの性能を評価し、ベンチマークを構築した。
その結果、我々のデータセットは、テストされたモデルにより大きな困難をもたらし、VCRのさらなる探索を必要とするシナリオを強調します。
興味深いことに、夜間のシーンは、最高のパフォーマンスモデルによるエラーのかなりの部分を占めている。
この研究は、将来のVCR研究の基礎を提供するとともに、細粒度車両分類の分野で貴重な洞察を提供する。
関連論文リスト
- Label-Efficient 3D Object Detection For Road-Side Units [10.663986706501188]
協調的知覚は、インテリジェント・ロードサイド・ユニット(RSU)との深部情報融合による自動運転車の知覚を高める
これらの手法は、特に注釈付きRSUデータを必要とするため、実際のデプロイメントにおいて大きなハードルを生んでいる。
教師なしオブジェクト発見に基づくRSUのためのラベル効率の高いオブジェクト検出手法を考案する。
論文 参考訳(メタデータ) (2024-04-09T12:29:16Z) - Pre-Training LiDAR-Based 3D Object Detectors Through Colorization [65.03659880456048]
我々は,データとラベルのギャップを埋めるために,革新的な事前学習手法であるグラウンドドポイントカラー化(GPC)を導入する。
GPCは、LiDAR点雲を色付けし、価値あるセマンティック・キューを装備するモデルを教えている。
KITTIとデータセットの実験結果は、GPCの顕著な効果を示している。
論文 参考訳(メタデータ) (2023-10-23T06:00:24Z) - LVLane: Deep Learning for Lane Detection and Classification in
Challenging Conditions [2.5641096293146712]
本稿では,ディープラーニング手法に基づくエンドツーエンドの車線検出・分類システムを提案する。
本研究では,最新技術(SOTA)レーンローカライゼーションモデルにおいて重要な課題を提起するシナリオを包含する,厳密にキュレートされたユニークなデータセットを提案する。
そこで本研究では,CNNをベースとした検知器とシームレスに統合し,異なるレーンの識別を容易にする分類手法を提案する。
論文 参考訳(メタデータ) (2023-07-13T16:09:53Z) - On the Cross-dataset Generalization in License Plate Recognition [1.8514314381314887]
12のOCRモデルのクロスデータセット一般化を実証的に評価するために,従来の分割対1データセットアウトの実験的なセットアップを提案する。
その結果、ALPRコンテキストにおけるアプローチを評価するために、従来の分割プロトコルの制限に光を当てた。
論文 参考訳(メタデータ) (2022-01-02T00:56:09Z) - Pluggable Weakly-Supervised Cross-View Learning for Accurate Vehicle
Re-Identification [53.6218051770131]
クロスビューの一貫した機能表現は、正確な車両ReIDの鍵です。
既存のアプローチは、広範な余分な視点アノテーションを使用して、クロスビュー学習を監督する。
Weakly-supervised Cross-View Learning (WCVL) モジュールを車載用として提案する。
論文 参考訳(メタデータ) (2021-03-09T11:51:09Z) - RGB-D Salient Object Detection: A Survey [195.83586883670358]
様々な観点からRGB-Dに基づくSODモデルを総合的に調査する。
また、このドメインからSODモデルと人気のあるベンチマークデータセットもレビューします。
今後の研究に向けたRGB-DベースのSODの課題と方向性について論じる。
論文 参考訳(メタデータ) (2020-08-01T10:01:32Z) - Anomalous Motion Detection on Highway Using Deep Learning [14.617786106427834]
本稿では,新しい異常検出データセットであるハイウェイ交通異常(HTA)データセットを提案する。
我々は、最先端のディープラーニング異常検出モデルを評価し、これらの手法に新しいバリエーションを提案する。
論文 参考訳(メタデータ) (2020-06-15T05:40:11Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
我々は,4つのパブリックな車両データセットを活用することで,大規模車両データセット(VabyNet)を構築することを提案する。
VehicleNetからより堅牢な視覚表現を学習するための、シンプルで効果的な2段階プログレッシブアプローチを設計する。
AICity Challengeのプライベートテストセットにおいて,最先端の精度86.07%mAPを実現した。
論文 参考訳(メタデータ) (2020-04-14T05:06:38Z) - The Devil is in the Details: Self-Supervised Attention for Vehicle
Re-Identification [75.3310894042132]
車両識別のための自己監督的注意(SAVER)は、車両固有の識別特徴を効果的に学習するための新しいアプローチである。
我々は,SAVERがVeRi, VehicleID, Vehicle-1M, VERI-Wildのデータセットに挑戦する際の最先端性を改善することを示す。
論文 参考訳(メタデータ) (2020-04-14T02:24:47Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。