GeoMeter: Probing Depth and Height Perception of Large Visual-Language Models
- URL: http://arxiv.org/abs/2408.11748v3
- Date: Fri, 30 Aug 2024 13:52:12 GMT
- Title: GeoMeter: Probing Depth and Height Perception of Large Visual-Language Models
- Authors: Shehreen Azad, Yash Jain, Rishit Garg, Yogesh S Rawat, Vibhav Vineet,
- Abstract summary: We focus on the geometric comprehension of Vision Language Models (VLMs)
We benchmark 17 state-of-the-art VLMs using datasets encompassing Synthetic 2D, Synthetic 3D, and Real-World scenarios.
Our key insights include detailed analyses of the shortcomings in depth and height reasoning capabilities of VLMs and the inherent bias present in these models.
- Score: 21.209275651704758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geometric understanding is crucial for navigating and interacting with our environment. While large Vision Language Models (VLMs) demonstrate impressive capabilities, deploying them in real-world scenarios necessitates a comparable geometric understanding in visual perception. In this work, we focus on the geometric comprehension of these models; specifically targeting the depths and heights of objects within a scene. Our observations reveal that, although VLMs excel in basic geometric properties perception such as shape and size, they encounter significant challenges in reasoning about the depth and height of objects. To address this, we introduce GeoMeter, a suite of benchmark datasets encompassing Synthetic 2D, Synthetic 3D, and Real-World scenarios to rigorously evaluate these aspects. We benchmark 17 state-of-the-art VLMs using these datasets and find that they consistently struggle with both depth and height perception. Our key insights include detailed analyses of the shortcomings in depth and height reasoning capabilities of VLMs and the inherent bias present in these models. This study aims to pave the way for the development of VLMs with enhanced geometric understanding, crucial for real-world applications.
Related papers
- MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams [65.02628814094639]
Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements.
Current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether Multimodal Large Language Models genuinely understand mathematical diagrams beyond superficial pattern recognition.
We introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs.
We construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text annotated with geometric primitives and precise spatial relationships.
arXiv Detail & Related papers (2025-03-26T17:30:41Z) - Survey on Monocular Metric Depth Estimation [0.9790236766474202]
Deep learning methods typically estimate relative depth from a single image, but the lack of metric scale often leads to geometric inconsistencies.
Monocular Metric Depth Estimation (MMDE) addresses this issue by producing depth maps with absolute scale.
This paper presents a structured survey of depth estimation methods, tracing the evolution from traditional geometry-based approaches to modern deep learning models.
arXiv Detail & Related papers (2025-01-21T02:51:10Z) - Space3D-Bench: Spatial 3D Question Answering Benchmark [49.259397521459114]
We present Space3D-Bench - a collection of 1000 general spatial questions and answers related to scenes of the Replica dataset.
We provide an assessment system that grades natural language responses based on predefined ground-truth answers.
Finally, we introduce a baseline called RAG3D-Chat integrating the world understanding of foundation models with rich context retrieval.
arXiv Detail & Related papers (2024-08-29T16:05:22Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
The ability to understand and reason about spatial relationships between objects in images is an important component of visual reasoning.
We extend the previously released What'sUp dataset and propose a novel comprehensive evaluation for spatial relationship understanding.
arXiv Detail & Related papers (2024-06-19T06:15:26Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - GeomVerse: A Systematic Evaluation of Large Models for Geometric
Reasoning [17.61621287003562]
We evaluate vision language models (VLMs) along various axes through the lens of geometry problems.
We procedurally create a synthetic dataset of geometry questions with controllable difficulty levels along multiple axes.
The empirical results obtained using our benchmark for state-of-the-art VLMs indicate that these models are not as capable in subjects like geometry.
arXiv Detail & Related papers (2023-12-19T15:25:39Z) - Weakly Supervised Relative Spatial Reasoning for Visual Question
Answering [38.05223339919346]
We evaluate the faithfulness of V&L models to such geometric understanding.
We train V&L with weak supervision from off-the-shelf depth estimators.
This leads to considerable improvements in accuracy for the "GQA" visual question answering challenge.
arXiv Detail & Related papers (2021-09-04T21:29:06Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - DONet: Learning Category-Level 6D Object Pose and Size Estimation from
Depth Observation [53.55300278592281]
We propose a method of Category-level 6D Object Pose and Size Estimation (COPSE) from a single depth image.
Our framework makes inferences based on the rich geometric information of the object in the depth channel alone.
Our framework competes with state-of-the-art approaches that require labeled real-world images.
arXiv Detail & Related papers (2021-06-27T10:41:50Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
We show the importance of the high-order 3D geometric constraints for depth prediction.
By designing a loss term that enforces a simple geometric constraint, we significantly improve the accuracy and robustness of monocular depth estimation.
We show state-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI.
arXiv Detail & Related papers (2021-03-07T00:08:21Z) - Predicting Relative Depth between Objects from Semantic Features [2.127049691404299]
The 3D depth of objects depicted in 2D images is one such feature.
The state of the art in this area are complex Neural Network models trained on stereo image data to predict depth per pixel.
An overall increase of 14% in relative depth accuracy over relative depth computed from the monodepth model derived results is achieved.
arXiv Detail & Related papers (2021-01-12T17:28:23Z) - Learning to Reconstruct and Segment 3D Objects [4.709764624933227]
We aim to understand scenes and the objects within them by learning general and robust representations using deep neural networks.
This thesis makes three core contributions from object-level 3D shape estimation from single or multiple views to scene-level semantic understanding.
arXiv Detail & Related papers (2020-10-19T15:09:04Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z) - Learning Depth With Very Sparse Supervision [57.911425589947314]
This paper explores the idea that perception gets coupled to 3D properties of the world via interaction with the environment.
We train a specialized global-local network architecture with what would be available to a robot interacting with the environment.
Experiments on several datasets show that, when ground truth is available even for just one of the image pixels, the proposed network can learn monocular dense depth estimation up to 22.5% more accurately than state-of-the-art approaches.
arXiv Detail & Related papers (2020-03-02T10:44:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.