論文の概要: DrivAerML: High-Fidelity Computational Fluid Dynamics Dataset for Road-Car External Aerodynamics
- arxiv url: http://arxiv.org/abs/2408.11969v1
- Date: Wed, 21 Aug 2024 19:47:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 17:54:29.786430
- Title: DrivAerML: High-Fidelity Computational Fluid Dynamics Dataset for Road-Car External Aerodynamics
- Title(参考訳): DrivAerML:ロードカー外空力のための高速数値流体力学データセット
- Authors: Neil Ashton, Charles Mockett, Marian Fuchs, Louis Fliessbach, Hendrik Hetmann, Thilo Knacke, Norbert Schonwald, Vangelis Skaperdas, Grigoris Fotiadis, Astrid Walle, Burkhard Hupertz, Danielle Maddix,
- Abstract要約: このデータセットは、自動車空気力学のための高忠実なオープンソース(CC-BY-SA)パブリックデータセットである。
広く使用されているDrivAerノッチバックの500のパラメトリックな形状の派生型に基づいている。
高忠実度CFDを使用した複雑な自動車構成のための、最初の大規模なパブリックドメインデータセットである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) has the potential to revolutionise the field of automotive aerodynamics, enabling split-second flow predictions early in the design process. However, the lack of open-source training data for realistic road cars, using high-fidelity CFD methods, represents a barrier to their development. To address this, a high-fidelity open-source (CC-BY-SA) public dataset for automotive aerodynamics has been generated, based on 500 parametrically morphed variants of the widely-used DrivAer notchback generic vehicle. Mesh generation and scale-resolving CFD was executed using consistent and validated automatic workflows representative of the industrial state-of-the-art. Geometries and rich aerodynamic data are published in open-source formats. To our knowledge, this is the first large, public-domain dataset for complex automotive configurations generated using high-fidelity CFD.
- Abstract(参考訳): 機械学習(ML)は、自動車空力学の分野に革命をもたらす可能性を秘めており、設計プロセスの早い段階で秒単位のフロー予測を可能にする。
しかし、高忠実度CFD手法を用いたリアルな路面車のオープンソーストレーニングデータが欠如していることは、彼らの発展の障壁となっている。
これを解決するために、広く使われているDrivAerノッチバックの500のパラメトリックな変形版に基づいて、自動車空気力学のための高忠実なオープンソースデータセット(CC-BY-SA)が作成されている。
メッシュ生成とスケール解決のCFDは、産業状態を表す一貫した検証済みの自動ワークフローを使用して実行された。
ジオメトリとリッチな空力データはオープンソース形式で公開されている。
我々の知る限り、これは、高忠実度CFDを用いて生成された複雑な自動車構成のための、最初の大規模なパブリックドメインデータセットである。
関連論文リスト
- AhmedML: High-Fidelity Computational Fluid Dynamics Dataset for Incompressible, Low-Speed Bluff Body Aerodynamics [2.2299174221081395]
本稿では,Ahmed Car Bodyの500種類の幾何学的変動のCFDシミュレーションを高忠実度で高精度に構成した新しいオープンソースデータセットを提案する。
このデータセットにはシミュレーション結果が含まれており、基本的な流れ物理学の幅広いセットを示している。
これは、広く使われているAhmed車体に高忠実なCFD手法を用いた最初のオープンソースの大規模データセットである、著者の知識を表している。
論文 参考訳(メタデータ) (2024-07-30T13:07:51Z) - WindsorML: High-Fidelity Computational Fluid Dynamics Dataset For Automotive Aerodynamics [1.7258674811482855]
本稿では,Windsorボディの355の幾何学的変種を含む機械学習(ML)のための,オープンソースの新しい高忠実度データセットを提案する。
著者らにとってこれは、許容オープンソースライセンス(CC-BY-SA)を持つWindsorボディのための、最初の大規模高忠実CFDデータセットである。
論文 参考訳(メタデータ) (2024-07-27T18:33:10Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - DrivAerNet++: A Large-Scale Multimodal Car Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks [25.00264553520033]
DrivAerNet++は、高忠実度計算流体力学(CFD)シミュレーションをモデルとした8000の多種多様な自動車設計で構成されている。
データセットには、ファストバック、ノッチバック、エステートバックといった多様な車種が含まれており、内燃機関と電気自動車の両方を表す車体と車輪のデザインが異なる。
このデータセットは、データ駆動設計最適化、生成モデリング、代理モデルトレーニング、CFDシミュレーションアクセラレーション、幾何学的分類を含む幅広い機械学習アプリケーションをサポートしている。
論文 参考訳(メタデータ) (2024-06-13T23:19:48Z) - DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design
and Graph-Based Drag Prediction [30.697742505713254]
本研究では,3次元産業標準車形状の大規模高速CFDデータセットであるDrivAerNetと,動的グラフ畳み込みニューラルネットワークモデルであるRegDGCNNを紹介する。
DrivAerNetとRegDGCNNは共に、車の設計プロセスを加速し、より効率的な車両の開発に貢献することを約束している。
論文 参考訳(メタデータ) (2024-03-12T20:02:39Z) - AutoFT: Learning an Objective for Robust Fine-Tuning [60.641186718253735]
ファンデーションモデルは、微調整によって下流タスクに適応できるリッチな表現をエンコードする。
手作り正則化技術を用いた頑健な微調整への最近のアプローチ
我々は、堅牢な微調整のためのデータ駆動型アプローチであるAutoFTを提案する。
論文 参考訳(メタデータ) (2024-01-18T18:58:49Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
ビジョンファウンデーションモデル(VFM)は、幅広いAIアプリケーションのための強力なビルディングブロックとして機能する。
総合的なトレーニングデータの不足、マルチセンサー統合の必要性、多様なタスク固有のアーキテクチャは、VFMの開発に重大な障害をもたらす。
本稿では、自動運転に特化したVFMを鍛造する上で重要な課題について述べるとともに、今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-01-16T01:57:24Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - A Synergistic Framework Leveraging Autoencoders and Generative
Adversarial Networks for the Synthesis of Computational Fluid Dynamics
Results in Aerofoil Aerodynamics [0.5018156030818882]
本研究では,自動エンコーダとGANを組み合わせてCFD結果を生成する手法を提案する。
我々の革新的なフレームワークは、オートエンコーダの本質的な能力を利用して、エアロフォイルジオメトリーを圧縮された20長ベクトル表現にエンコードする。
条件付きGANネットワークは、このベクトルを正確な圧力分布プロットに変換し、固定風速、攻撃角、乱流レベル仕様を考慮に入れている。
論文 参考訳(メタデータ) (2023-05-28T09:46:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。