Information Scrambling in Bosonic Gaussian Dynamics
- URL: http://arxiv.org/abs/2408.12089v3
- Date: Mon, 04 Aug 2025 15:18:20 GMT
- Title: Information Scrambling in Bosonic Gaussian Dynamics
- Authors: Ali Mollabashi, Saleh Rahimi-Keshari,
- Abstract summary: We investigate the dynamics of information scrambling in bosonic systems undergoing Gaussian unitary evolution.<n>We show that randomness in the Hamiltonian causes the tripartite mutual information to saturate at relatively large negative values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We investigate the dynamics of information scrambling in bosonic systems undergoing Gaussian unitary evolution associated with quadratic Hamiltonians. For initial Gaussian states, we observe the disappearance of the memory effect in the entanglement dynamics of disjoint blocks under Gaussian random local dynamics. In addition, we show that randomness in the Hamiltonian causes the tripartite mutual information to saturate at relatively large negative values. Therefore, despite being integrable, these systems exhibit information-scrambling diagnostics that mirror those observed in chaotic systems. We note, however, that random quadratic Hamiltonians can have a component exhibiting Wigner-Dyson energy-level statistics; for non-Gaussian states within the corresponding subspace, these systems can display chaotic behavior. Our results provide insight into the Gaussian dynamics of continuous-variable systems, which are useful and available resources for quantum information processing.
Related papers
- Dynamical learning and quantum memory with non-Hermitian many-body systems [37.69303106863453]
Non-Hermitian (NH) systems provide a fertile platform for quantum technologies.<n>We investigate this relationship using the example of an interacting NH spin system defined on random graphs.<n>We show that the onset of the first exceptional point corresponds to an abrupt change in the system's learning capacity.
arXiv Detail & Related papers (2025-06-09T11:58:40Z) - Machine Learning-Enhanced Characterisation of Structured Spectral Densities: Leveraging the Reaction Coordinate Mapping [41.94295877935867]
Spectral densities encode essential information about system-environment interactions in open-quantum systems.<n>We leverage machine learning techniques to reconstruct key environmental features using the reaction coordinate mapping.<n>For a dissipative spin-boson model with a structured spectral density expressed as a sum of Lorentzian peaks, we demonstrate that the time evolution of a system observable can be used by a neural network to classify the spectral density as comprising one, two, or three Lorentzian peaks.
arXiv Detail & Related papers (2025-01-13T17:02:04Z) - Disorder-averaged Qudit Dynamics [0.0]
We derive exact solutions for disorder-averaged dynamics generated by any Hamiltonian.
We illustrate the scheme for qubit and qudit systems described by (products of) spin $1/2$, spin $1$, and clock operators.
arXiv Detail & Related papers (2024-12-23T12:32:22Z) - Observation of anomalous information scrambling in a Rydberg atom array [5.591432092887684]
Quantum information scrambling describes the propagation and effective loss of local information.
Here, we report the experimental observation of anomalous information scrambling in an atomic tweezer array.
arXiv Detail & Related papers (2024-10-21T16:40:25Z) - Observation of quantum information collapse-and-revival in a strongly-interacting Rydberg atom array [23.95382881394397]
We present the first measurements of out-of-time correlators and Holevo information in a Rydberg atom array.
By leveraging these tools, we observe a novel qu-temporal collapse-revival behaviour of quantum information.
Our experiment sheds light on the unique information dynamics in many-body systems with kinetic constraints.
arXiv Detail & Related papers (2024-10-20T17:44:39Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Hayden-Preskill Recovery in Hamiltonian Systems [2.3020018305241337]
Information scrambling refers to the unitary dynamics that quickly spreads and encodes localized quantum information over an entire many-body system.
We show that information recovery is possible in certain, but not all, chaotic models.
We also show that information recovery probes transitions caused by the change of information-theoretic features of the dynamics.
arXiv Detail & Related papers (2023-03-03T15:26:00Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum Information Scrambling in Quantum Many-body Scarred Systems [10.413943995320887]
We study the quantum information scrambling dynamics in quantum many-body scarred systems.
We find that both the OTOC and Holevo information exhibit a linear light cone and periodic oscillations inside the light cone for initial states within the scarred subspace.
arXiv Detail & Related papers (2022-01-05T19:00:02Z) - Mechanisms for the emergence of Gaussian correlations [0.471876092032107]
We investigate two mechanisms leading to memory loss of non-Gaussian correlations after switching off the interactions in an isolated quantum system.
The first mechanism is based on spatial scrambling and results in the emergence of locally Gaussian steady states.
The second mechanism, characterized as canonical transmutation', is based on the mixing of a pair of canonically conjugate fields.
arXiv Detail & Related papers (2021-08-17T18:06:19Z) - Informational steady-states and conditional entropy production in
continuously monitored systems: the case of Gaussian systems [0.0]
In particular, the degree of irreversibility ensuing from a non-equilibrium process is strongly affected by measurements aimed at acquiring information on the state of a system of interest.
We build up a toolbox that fully characterizes the thermodynamics of continuously measured non-equilibrium Gaussian systems and processes.
arXiv Detail & Related papers (2021-05-26T12:39:13Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
We present LG-ODE, a latent ordinary differential equation generative model for modeling multi-agent dynamic system with known graph structure.
It can simultaneously learn the embedding of high dimensional trajectories and infer continuous latent system dynamics.
Our model employs a novel encoder parameterized by a graph neural network that can infer initial states in an unsupervised way.
arXiv Detail & Related papers (2020-11-08T01:02:22Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z) - Memory kernel and divisibility of Gaussian Collisional Models [0.0]
Memory effects in the dynamics of open systems have been the subject of significant interest in the last decades.
We analyze two types of interactions, a beam-splitter implementing a partial SWAP and a two-mode squeezing, which entangles the ancillas and feeds excitations into the system.
By analyzing the memory kernel and divisibility for these two representative scenarios, our results help to shed light on the intricate mechanisms behind memory effects in the quantum domain.
arXiv Detail & Related papers (2020-08-03T10:28:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.