論文の概要: UNCO: Towards Unifying Neural Combinatorial Optimization through Large Language Model
- arxiv url: http://arxiv.org/abs/2408.12214v1
- Date: Thu, 22 Aug 2024 08:42:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-23 14:43:27.604850
- Title: UNCO: Towards Unifying Neural Combinatorial Optimization through Large Language Model
- Title(参考訳): UNCO: 大規模言語モデルによるニューラルコンビネーション最適化の統一を目指す
- Authors: Xia Jiang, Yaoxin Wu, Yuan Wang, Yingqian Zhang,
- Abstract要約: 1つのモデルで異なるタイプの最適化問題(COP)を解決するために、統一的なニューラルネットワーク最適化フレームワークを提案する。
我々は自然言語を用いて、異なるCOPに対してテキスト分散インスタンスを定式化し、それらを大言語モデル(LLM)によって同じ埋め込み空間にエンコードする。
実験により、UNCOモデルはシングルセッショントレーニング後に複数のCOPを解決でき、伝統的なベースラインや学習ベースのベースラインに匹敵する満足なパフォーマンスを達成できることが示された。
- 参考スコア(独自算出の注目度): 21.232626415696267
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, applying neural networks to address combinatorial optimization problems (COPs) has attracted considerable research attention. The prevailing methods always train deep models independently on specific problems, lacking a unified framework for concurrently tackling various COPs. To this end, we propose a unified neural combinatorial optimization (UNCO) framework to solve different types of COPs by a single model. Specifically, we use natural language to formulate text-attributed instances for different COPs and encode them in the same embedding space by the large language model (LLM). The obtained embeddings are further advanced by an encoder-decoder model without any problem-specific modules, thereby facilitating a unified process of solution construction. We further adopt the conflict gradients erasing reinforcement learning (CGERL) algorithm to train the UNCO model, delivering better performance across different COPs than vanilla multi-objective learning. Experiments show that the UNCO model can solve multiple COPs after a single-session training, and achieves satisfactory performance that is comparable to several traditional or learning-based baselines. Instead of pursuing the best performance for each COP, we explore the synergy between tasks and few-shot generalization based on LLM to inspire future work.
- Abstract(参考訳): 近年,組合せ最適化問題(COP)にニューラルネットワークを適用した研究が注目されている。
一般的な方法は、特定の問題に対して独立してディープモデルを訓練し、様々なCOPを同時に扱うための統一されたフレームワークを欠いている。
そこで本研究では,異なる種類のCOPを単一モデルで解くために,UNCO(Unified Neural combinatorial Optimization)フレームワークを提案する。
具体的には、自然言語を用いて異なるCOPに対してテキスト分散インスタンスを定式化し、それらを大言語モデル(LLM)によって同じ埋め込み空間にエンコードする。
得られた埋め込みは、問題固有のモジュールを持たないエンコーダ・デコーダモデルによりさらに進歩し、ソリューション構築の統一プロセスを容易にする。
我々はさらに、強化学習(CGERL)アルゴリズムを応用してUNCOモデルを訓練し、バニラ多目的学習よりも異なるCOP間で優れた性能を提供する。
実験により、UNCOモデルはシングルセッショントレーニング後に複数のCOPを解決でき、伝統的なベースラインや学習ベースのベースラインに匹敵する満足なパフォーマンスを達成できることが示された。
各COPで最高の性能を追求する代わりに,LCMに基づくタスクと数ショットの一般化の相乗効果を探求し,今後の研究を刺激する。
関連論文リスト
- Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo [90.78001821963008]
広い範囲のLMアプリケーションは、構文的制約や意味論的制約に適合するテキストを生成する必要がある。
我々は、連続モンテカルロ(SMC)に基づく制御LM生成のためのアーキテクチャを開発する。
我々のシステムはLew et al. (2023) のフレームワーク上に構築されており、言語モデル確率型プログラミング言語と統合されている。
論文 参考訳(メタデータ) (2025-04-17T17:49:40Z) - Large Language Models as Particle Swarm Optimizers [0.0]
LMPSOでは、各粒子の速度は次の候補解を生成するプロンプトとして表される。
提案したLMPSOアプローチは,トラベリングセールスマン問題(TSP)を含む複数の問題領域にまたがって評価される。
実験の結果,LMPSOは,解が構造化シーケンスとして表される問題に対して特に有効であることが示された。
論文 参考訳(メタデータ) (2025-04-12T15:04:13Z) - Large Language Models for Combinatorial Optimization of Design Structure Matrix [4.513609458468522]
エンジニアリングアプリケーションの効率と性能を改善するためには、組合せ最適化(CO)が不可欠である。
実世界の工学的問題に関しては、純粋数学的推論に基づくアルゴリズムは限定的であり、最適化に必要な文脈ニュアンスを捉えることができない。
本研究では,工学的CO問題の解法におけるLarge Language Models (LLMs) の可能性について,その推論能力と文脈的知識を活用して検討する。
論文 参考訳(メタデータ) (2024-11-19T15:39:51Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Solving General Natural-Language-Description Optimization Problems with Large Language Models [34.50671063271608]
外部ソルバでLLMを増強するOPtLLMという新しいフレームワークを提案する。
OptLLMは自然言語でユーザクエリを受け付け、それらを数学的定式化やプログラミングコードに変換し、解決者を呼び出して結果を計算する。
OptLLMフレームワークのいくつかの機能は、2023年6月から試用されている。
論文 参考訳(メタデータ) (2024-07-09T07:11:10Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
我々は,制約付き多目的最適化問題に対する進化探索を強化するために,大規模言語モデル(LLM)を用いる。
私たちの目標は、進化の集団の収束を早めることです。
論文 参考訳(メタデータ) (2024-05-09T13:44:04Z) - Instance-Conditioned Adaptation for Large-scale Generalization of Neural Combinatorial Optimization [15.842155380912002]
本研究は,ニューラル最適化の大規模一般化のための新しいインスタンス・コンディション適応モデル(ICAM)を提案する。
特に,NCOモデルのための強力なインスタンス条件付きルーティング適応モジュールを設計する。
我々は,ラベル付き最適解を使わずに,モデルがクロススケールな特徴を学習することのできる,効率的な3段階強化学習ベーストレーニング手法を開発した。
論文 参考訳(メタデータ) (2024-05-03T08:00:19Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - SparseLLM: Towards Global Pruning for Pre-trained Language Models [12.057369029549534]
本研究では,グローバルプルーニングプロセスを再定義する新しいフレームワークであるSparseLLMを提案する。
SparseLLMのアプローチは、LLMをモジュラ関数の連鎖として概念化し、問題の分解に補助変数を利用する。
高いスパーシティ・レシエーションにおいて、特に顕著なパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-02-28T00:09:07Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiEは、大規模な言語モデルの協調トレーニングを容易にする効率的なライブラリである。
モジュール設計と包括的な機能により、CoLLiEは効率性、使いやすさ、カスタマイズのバランスのとれたブレンドを提供する。
論文 参考訳(メタデータ) (2023-12-01T08:02:16Z) - Improving Machine Translation with Large Language Models: A Preliminary Study with Cooperative Decoding [73.32763904267186]
大きな言語モデル(LLM)は、優れた翻訳品質を達成する可能性を示す。
我々は,NMTシステムを事前翻訳モデルとして扱うCooperative Decoding(CoDec)と,MT指向LLMを補足解として提案する。
論文 参考訳(メタデータ) (2023-11-06T03:41:57Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - Deep Negative Correlation Classification [82.45045814842595]
既存のディープアンサンブル手法は、多くの異なるモデルをナビゲートし、予測を集約する。
深部負相関分類(DNCC)を提案する。
DNCCは、個々の推定器が正確かつ負の相関を持つ深い分類アンサンブルを生成する。
論文 参考訳(メタデータ) (2022-12-14T07:35:20Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - On the Generalization of Neural Combinatorial Optimization Heuristics [0.7049738935364298]
提案手法は,2つの最先端モデルの一般化を著しく改善することを示す。
我々は、個別の学習課題として、与えられたインスタンス分布上でのCO問題の解法を定式化する。
新しいタスクに適応する能力の最適化を目的として,様々なタスクのモデル学習のためのメタラーニング手法について検討する。
論文 参考訳(メタデータ) (2022-06-01T22:39:35Z) - Multi-objective Pointer Network for Combinatorial Optimization [10.286195356515355]
多目的最適化問題(MOCOP)は、様々な実応用に存在している。
最適化問題に対する近似最適解を生成するために, 深部強化学習法 (DRL) が提案されている。
本研究では,MOPN(Multi-objective Pointer Network)と呼ばれる単一モデル深層強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-25T14:02:34Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Reversible Action Design for Combinatorial Optimization with
Reinforcement Learning [35.50454156611722]
強化学習(rl)は、これらの問題に取り組むための新しいフレームワークとして最近登場した。
最先端の実証性能を示すだけでなく、様々な種類のCOPに一般化する汎用RLフレームワークを提案します。
論文 参考訳(メタデータ) (2021-02-14T18:05:42Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。